The need for travel demand models is growing worldwide. Obtaining reasonably accurate level of service (LOS) attributes of different travel modes such as travel time and cost representing the performance of transporta...The need for travel demand models is growing worldwide. Obtaining reasonably accurate level of service (LOS) attributes of different travel modes such as travel time and cost representing the performance of transportation system is not a trivial task, especially in growing cities of developing countries. This study investigates the sensitivity of results of a travel mode choice model to different specifications of network-based LOS attributes using a mixed logit model. The study also looks at the possibilities of correcting some of the inaccuracies in network-based LOS attributes. Further, the study also explores the effects of different specifications of LOS data on implied values of time and aggregation forecasting. The findings indicate that the implied values of time are very sensitive to specification of data and model implying that utmost care must be taken if the purpose of the model is to estimate values of time. Models estimated on all specifications of LOS-data perform well in prediction, likely suggesting that the extra expense on developing a more detailed and accurate network models so as to derive more precise LOS attributes is unnecessary for impact analyses of some policies.展开更多
This study investigates drivers' diversion decision behavior under expressway variable message signs that provide travel time of both an expressway route and a local street route. Both a conventional cross-sectional ...This study investigates drivers' diversion decision behavior under expressway variable message signs that provide travel time of both an expressway route and a local street route. Both a conventional cross-sectional logit model and a mixed logit model are developed to model drivers' response to travel time information. It is based on the data collected from a stated preference survey in Shanghai, China. The mixed logit model captures the heterogeneity in the value of "travel time" and "number of traffic lights" and accounts for correlations among repeated choices of the same respondent. Results show that travel time saving and driving experience serve as positive factors, while the number of traffic lights on the arterial road, expressway use frequency, being a middle-aged driver, and being a driver of an employer-provided car serve as negative factors in diversion. The mixed logit model obviously outperforms the cross-sectional model in dealing with repeated choices and capturing heterogeneity regarding the goodness-of-fit criterion. The significance of standard deviations of random coefficients for travel time and number of traffic lights evidences the existence of hetero- geneity in the driver population. The findings of this study have implications for future efforts in driver behaviormodeling and advanced traveler information system assessment.展开更多
文摘The need for travel demand models is growing worldwide. Obtaining reasonably accurate level of service (LOS) attributes of different travel modes such as travel time and cost representing the performance of transportation system is not a trivial task, especially in growing cities of developing countries. This study investigates the sensitivity of results of a travel mode choice model to different specifications of network-based LOS attributes using a mixed logit model. The study also looks at the possibilities of correcting some of the inaccuracies in network-based LOS attributes. Further, the study also explores the effects of different specifications of LOS data on implied values of time and aggregation forecasting. The findings indicate that the implied values of time are very sensitive to specification of data and model implying that utmost care must be taken if the purpose of the model is to estimate values of time. Models estimated on all specifications of LOS-data perform well in prediction, likely suggesting that the extra expense on developing a more detailed and accurate network models so as to derive more precise LOS attributes is unnecessary for impact analyses of some policies.
基金supported by a project (No. 51008195) funded by National Natural Science Foundation of Chinaa Shanghai First-Class Academic Discipline Project (No. S1201YLXK) funded by Shanghai Government+1 种基金a project (No. 14XSZ02) funded by University of Shanghai for Science and Technologya project funded by Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University
文摘This study investigates drivers' diversion decision behavior under expressway variable message signs that provide travel time of both an expressway route and a local street route. Both a conventional cross-sectional logit model and a mixed logit model are developed to model drivers' response to travel time information. It is based on the data collected from a stated preference survey in Shanghai, China. The mixed logit model captures the heterogeneity in the value of "travel time" and "number of traffic lights" and accounts for correlations among repeated choices of the same respondent. Results show that travel time saving and driving experience serve as positive factors, while the number of traffic lights on the arterial road, expressway use frequency, being a middle-aged driver, and being a driver of an employer-provided car serve as negative factors in diversion. The mixed logit model obviously outperforms the cross-sectional model in dealing with repeated choices and capturing heterogeneity regarding the goodness-of-fit criterion. The significance of standard deviations of random coefficients for travel time and number of traffic lights evidences the existence of hetero- geneity in the driver population. The findings of this study have implications for future efforts in driver behaviormodeling and advanced traveler information system assessment.