为了提高圆筒永磁直线电机(tubular permanent magnet linear motor,TPMLM)在不匹配扰动下的调速性能,提出一种基于内模的滑模速度控制策略。该策略采用内模控制方法(internal model control,IMC)将TPMLM系统变换为1阶惯性系统,进而系...为了提高圆筒永磁直线电机(tubular permanent magnet linear motor,TPMLM)在不匹配扰动下的调速性能,提出一种基于内模的滑模速度控制策略。该策略采用内模控制方法(internal model control,IMC)将TPMLM系统变换为1阶惯性系统,进而系统响应速度由IMC调制系数a决定,实现了电机速度快速跟随且无超调,简化了动态性能设计。采用2阶扰动观测器观测系统不匹配扰动,并将其引入滑模面,滑模控制器与扰动观测器相结合,提高系统对不匹配扰动的鲁棒性能;同时将反馈电流引入速度控制,实现了速度、电流的双重闭环控制。仿真和实验结果验证了所提控制策略的有效性。展开更多
This paper proposes a fast integral terminal sliding mode(ITSM) control method for a cascaded nonlinear dynamical system with mismatched uncertainties. Firstly, an integral terminal sliding mode surface is presented...This paper proposes a fast integral terminal sliding mode(ITSM) control method for a cascaded nonlinear dynamical system with mismatched uncertainties. Firstly, an integral terminal sliding mode surface is presented, which not only avoids the singularity in the traditional terminal sliding mode, but also addresses the mismatched problems in the nonlinear control system. Secondly, a new ITSM controller with finite convergence time based on the backstepping technique is derived for a cascaded nonlinear dynamical system with mismatched uncertainties. Thirdly, the convergence time of ITSM is analyzed, whose convergence speed is faster than those of two nonsingular terminal sliding modes.Finally, simulation results are presented in order to evaluate the effectiveness of ITSM control strategies for mismatched uncertainties.展开更多
The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees...The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees of freedom mass model is established based on the axial vibration characteristics of the transport ball screw,and the controller of an adaptive integral sliding mode is proposed combining the optimal design of state feedback gain matrix K to restrain the vibration and the matched disturbances and uncertainties.Then for the counteraction of the mismatched disturbances and uncertainties,a nonlinear disturbance observer is also developed.The trajectory tracking performance experiments and bandwidth analysis were conducted on experimental setup with the proposed control method.It is proved that the adaptive integral sliding mode controller has a high tracking performance and bandwidth especially for the axial vibration characteristics model of ball screw drives.And the ball screw tracking accuracy also has a considerable improvement with the application of the proposed nonlinear disturbance observer.展开更多
文摘为了提高圆筒永磁直线电机(tubular permanent magnet linear motor,TPMLM)在不匹配扰动下的调速性能,提出一种基于内模的滑模速度控制策略。该策略采用内模控制方法(internal model control,IMC)将TPMLM系统变换为1阶惯性系统,进而系统响应速度由IMC调制系数a决定,实现了电机速度快速跟随且无超调,简化了动态性能设计。采用2阶扰动观测器观测系统不匹配扰动,并将其引入滑模面,滑模控制器与扰动观测器相结合,提高系统对不匹配扰动的鲁棒性能;同时将反馈电流引入速度控制,实现了速度、电流的双重闭环控制。仿真和实验结果验证了所提控制策略的有效性。
基金supported by the National Natural Science Foundation of China(61473226)
文摘This paper proposes a fast integral terminal sliding mode(ITSM) control method for a cascaded nonlinear dynamical system with mismatched uncertainties. Firstly, an integral terminal sliding mode surface is presented, which not only avoids the singularity in the traditional terminal sliding mode, but also addresses the mismatched problems in the nonlinear control system. Secondly, a new ITSM controller with finite convergence time based on the backstepping technique is derived for a cascaded nonlinear dynamical system with mismatched uncertainties. Thirdly, the convergence time of ITSM is analyzed, whose convergence speed is faster than those of two nonsingular terminal sliding modes.Finally, simulation results are presented in order to evaluate the effectiveness of ITSM control strategies for mismatched uncertainties.
基金Project(2013ZX04008011)supported by the National Science and Technology Major Projects of ChinaProject(51675100)supported by the National Natural Science Foundation of China
文摘The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees of freedom mass model is established based on the axial vibration characteristics of the transport ball screw,and the controller of an adaptive integral sliding mode is proposed combining the optimal design of state feedback gain matrix K to restrain the vibration and the matched disturbances and uncertainties.Then for the counteraction of the mismatched disturbances and uncertainties,a nonlinear disturbance observer is also developed.The trajectory tracking performance experiments and bandwidth analysis were conducted on experimental setup with the proposed control method.It is proved that the adaptive integral sliding mode controller has a high tracking performance and bandwidth especially for the axial vibration characteristics model of ball screw drives.And the ball screw tracking accuracy also has a considerable improvement with the application of the proposed nonlinear disturbance observer.