Previous experimental and numerical analyses of the pressure pulse characteristics in a Francis turbine are extended here by using the unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport...Previous experimental and numerical analyses of the pressure pulse characteristics in a Francis turbine are extended here by using the unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport (SST) turbulence model to model the unsteady flow within the entire flow passage of a large Francis pump turbine with misaligned guide vanes at the rated rotational speed. The S-curve characteristics are analyzed by a combined use of the model test and the steady state simulation with the aligned guide vane firstly. Four misaligned guide vanes with two different openings are chosen to analyze the influence of pressure pulses in the turbine. The characteristics of the dominant unsteady flow frequencies in different parts of the pump turbine for various misaligned guide vane openings are investigated in detail. The predicted hydraulic performance and the pressure fluctuations show that the misaligned guide vanes reduce the relative pressure fluctuation amplitudes in the stationary part of the flow passage, but not the runner blades. The misaligned guide vanes have changed the low frequencies in the entire flow passage with the change of the pulse amplitudes mainly due to changes in the rotor-stator interaction and the low frequency vortex rope flow behavior.展开更多
Experimental studies of a model pump-turbine S-curve characteristics and its improvement by misaligned guide vanes (MGV) were extended to prototype pump turbine through 3-D transient flow simulations. The unsteady R...Experimental studies of a model pump-turbine S-curve characteristics and its improvement by misaligned guide vanes (MGV) were extended to prototype pump turbine through 3-D transient flow simulations. The unsteady Reynolds-averaged Navier-Stokes equations with the SST turbulence model were used to model the transient flow within the entire flow passage of a reversible pump-turbine with and without misaligned guide vanes during turbine model start-up. The unstable S-curve and its improvement by using misaligned guide vane were verified by model test and simulation. The transient flow calculations were used to clarify the variations of pressure pulse and internal flow behavior in the entire flow passage. The use of misaligned guide vanes can eliminate the S-curve characteristics of a pump-turbine, and can significantly increase the pressure pulse amplitude in the entire flow passage and the runner radial forces during start-up. The MGV only decreased the pulse amplitude on the guide vane suction side when the rotating speed was less than 50% rated speed. The hydraulic reason is that the MGV dramatically changed the flow patterns inside the entire flow passage, and destroyed the symmetry of the flow distribution inside the guide vane and runner.展开更多
To understand the engine main bearings' working condition is important in order to improve the performance of engine. However, thermal effects and thermal effect deformations of engine main bearings are rarely consid...To understand the engine main bearings' working condition is important in order to improve the performance of engine. However, thermal effects and thermal effect deformations of engine main bearings are rarely considered simultaneously in most studies. A typical finite element model is selected and the effect of thermoelastohydrodynamic(TEHD) reaction on engine main bearings is investigated. The calculated method of main bearing's thermal hydrodynamic reaction and journal misalignment effect is finite difference method, and its deformation reaction is calculated by using finite element method. The oil film pressure is solved numerically with Reynolds boundary conditions when various bearing characteristics are calculated. The whole model considers a temperature-pressure-viscosity relationship for the lubricant, surface roughness effect, and also an angular misalignment between the journal and the bearing. Numerical simulations of operation of a typical I6 diesel engine main bearing is conducted and importance of several contributing factors in mixed lubrication is discussed. The performance characteristics of journal misaligned main bearings under elastohydrodynamic(EHD) and TEHD loads of an I6 diesel engine are received, and then the journal center orbit movement, minimum oil film thickness and maximum oil film pressure of main bearings are estimated over a wide range of engine operation. The model is verified through the comparison with other present models. The TEHD performance of engine main bearings with various effects under the influences of journal misalignment is revealed, this is helpful to understand EHD and TEHD effect of misaligned engine main bearings.展开更多
On the basis of a sinusoidal model of the disturbed horizontal acceleration,the spectrum characteristics of misaligned angle and horizontal acceleration correction are analyzed.In an airborne gravimetry test,the misal...On the basis of a sinusoidal model of the disturbed horizontal acceleration,the spectrum characteristics of misaligned angle and horizontal acceleration correction are analyzed.In an airborne gravimetry test,the misaligned angle of platform and horizontal acceleration correction are calculated.They are 5′and 3 mGal,respectively,when the flight is stable.展开更多
The formalism of generalized diffraction integral for paraxial misaligned optical systems is used to investigate the propagation of the Modified Bessel-Gaussian (MBG) beam through a misaligned thin lens. The propertie...The formalism of generalized diffraction integral for paraxial misaligned optical systems is used to investigate the propagation of the Modified Bessel-Gaussian (MBG) beam through a misaligned thin lens. The properties of the propagation of MBG beam traveling through this misaligned ABCD optical system are discussed. A special case of misaligned circular thin lens is illustrated analytically and numerically. The shape of the MBG beam at the exit of the misaligned optical system is unchanged;however the center of the beam is shifted from the propagation axis in correlated manner with the design parameters of the optical system.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51009077)the National High Technology Research and Development Program of China(863 Program,2009AA05Z424)
文摘Previous experimental and numerical analyses of the pressure pulse characteristics in a Francis turbine are extended here by using the unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport (SST) turbulence model to model the unsteady flow within the entire flow passage of a large Francis pump turbine with misaligned guide vanes at the rated rotational speed. The S-curve characteristics are analyzed by a combined use of the model test and the steady state simulation with the aligned guide vane firstly. Four misaligned guide vanes with two different openings are chosen to analyze the influence of pressure pulses in the turbine. The characteristics of the dominant unsteady flow frequencies in different parts of the pump turbine for various misaligned guide vane openings are investigated in detail. The predicted hydraulic performance and the pressure fluctuations show that the misaligned guide vanes reduce the relative pressure fluctuation amplitudes in the stationary part of the flow passage, but not the runner blades. The misaligned guide vanes have changed the low frequencies in the entire flow passage with the change of the pulse amplitudes mainly due to changes in the rotor-stator interaction and the low frequency vortex rope flow behavior.
基金supported by the National Natural Science Foundation of China(51009077)State Key Laboratory of Hydroscience and Engineering(2014-KY-05)
文摘Experimental studies of a model pump-turbine S-curve characteristics and its improvement by misaligned guide vanes (MGV) were extended to prototype pump turbine through 3-D transient flow simulations. The unsteady Reynolds-averaged Navier-Stokes equations with the SST turbulence model were used to model the transient flow within the entire flow passage of a reversible pump-turbine with and without misaligned guide vanes during turbine model start-up. The unstable S-curve and its improvement by using misaligned guide vane were verified by model test and simulation. The transient flow calculations were used to clarify the variations of pressure pulse and internal flow behavior in the entire flow passage. The use of misaligned guide vanes can eliminate the S-curve characteristics of a pump-turbine, and can significantly increase the pressure pulse amplitude in the entire flow passage and the runner radial forces during start-up. The MGV only decreased the pulse amplitude on the guide vane suction side when the rotating speed was less than 50% rated speed. The hydraulic reason is that the MGV dramatically changed the flow patterns inside the entire flow passage, and destroyed the symmetry of the flow distribution inside the guide vane and runner.
基金Supported by National Science and Technology Support Program of China:Vibration and Noise Reduction Technology Research and Application of Bulldozers and Other Earth Moving Machinery(Grant No.2015BAF07B04)
文摘To understand the engine main bearings' working condition is important in order to improve the performance of engine. However, thermal effects and thermal effect deformations of engine main bearings are rarely considered simultaneously in most studies. A typical finite element model is selected and the effect of thermoelastohydrodynamic(TEHD) reaction on engine main bearings is investigated. The calculated method of main bearing's thermal hydrodynamic reaction and journal misalignment effect is finite difference method, and its deformation reaction is calculated by using finite element method. The oil film pressure is solved numerically with Reynolds boundary conditions when various bearing characteristics are calculated. The whole model considers a temperature-pressure-viscosity relationship for the lubricant, surface roughness effect, and also an angular misalignment between the journal and the bearing. Numerical simulations of operation of a typical I6 diesel engine main bearing is conducted and importance of several contributing factors in mixed lubrication is discussed. The performance characteristics of journal misaligned main bearings under elastohydrodynamic(EHD) and TEHD loads of an I6 diesel engine are received, and then the journal center orbit movement, minimum oil film thickness and maximum oil film pressure of main bearings are estimated over a wide range of engine operation. The model is verified through the comparison with other present models. The TEHD performance of engine main bearings with various effects under the influences of journal misalignment is revealed, this is helpful to understand EHD and TEHD effect of misaligned engine main bearings.
文摘On the basis of a sinusoidal model of the disturbed horizontal acceleration,the spectrum characteristics of misaligned angle and horizontal acceleration correction are analyzed.In an airborne gravimetry test,the misaligned angle of platform and horizontal acceleration correction are calculated.They are 5′and 3 mGal,respectively,when the flight is stable.
文摘The formalism of generalized diffraction integral for paraxial misaligned optical systems is used to investigate the propagation of the Modified Bessel-Gaussian (MBG) beam through a misaligned thin lens. The properties of the propagation of MBG beam traveling through this misaligned ABCD optical system are discussed. A special case of misaligned circular thin lens is illustrated analytically and numerically. The shape of the MBG beam at the exit of the misaligned optical system is unchanged;however the center of the beam is shifted from the propagation axis in correlated manner with the design parameters of the optical system.