为了精确识别直流配电网故障线路,缩小失电范围,并降低支节点附近故障选线盲区,提出了基于变相位系数–电磁时间反转(variable phase coefficient-electromagnetic time reversal,VPC-EMTR)的多端故障选线方法。该方法根据配电网拓扑和...为了精确识别直流配电网故障线路,缩小失电范围,并降低支节点附近故障选线盲区,提出了基于变相位系数–电磁时间反转(variable phase coefficient-electromagnetic time reversal,VPC-EMTR)的多端故障选线方法。该方法根据配电网拓扑和线路参数建立了无损镜像线路网络,利用测量点处的时间反转后的1模电流在无损镜像网络中建立电流源,并计算该线路网络中每一点处的假想故障的故障电流有效值,最大有效值所处线路即为故障线路。该方法设置各镜像支路的相位系数与其长度呈高斯分布函数关系,使得支节点附近的故障测距结果偏移至线路中间处。同时,该方法利用最少测量点二次计算故障选线结果,减少了多余测量点对选线结果的影响,保证了故障选线结果的可靠性。在理论上对该方法进行了证明,并在PSCAD中建立了“手拉手”型多端直流配电网络来验证该方法的有效性,仿真结果表明:基于VPC-EMTR的多端故障选线法的选线结果准确,能够减少支节点附近选线的盲区。展开更多
文摘为了精确识别直流配电网故障线路,缩小失电范围,并降低支节点附近故障选线盲区,提出了基于变相位系数–电磁时间反转(variable phase coefficient-electromagnetic time reversal,VPC-EMTR)的多端故障选线方法。该方法根据配电网拓扑和线路参数建立了无损镜像线路网络,利用测量点处的时间反转后的1模电流在无损镜像网络中建立电流源,并计算该线路网络中每一点处的假想故障的故障电流有效值,最大有效值所处线路即为故障线路。该方法设置各镜像支路的相位系数与其长度呈高斯分布函数关系,使得支节点附近的故障测距结果偏移至线路中间处。同时,该方法利用最少测量点二次计算故障选线结果,减少了多余测量点对选线结果的影响,保证了故障选线结果的可靠性。在理论上对该方法进行了证明,并在PSCAD中建立了“手拉手”型多端直流配电网络来验证该方法的有效性,仿真结果表明:基于VPC-EMTR的多端故障选线法的选线结果准确,能够减少支节点附近选线的盲区。