The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are ...The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are approximately equal to the Planck length. In this context, we have introduced a model that utilizes a combination of Schwarzschild’s radius and Compton length to quantify the gravitational length of an object. This model has provided a novel perspective in generalizing the uncertainty principle. Furthermore, it has elucidated the significance of the deforming linear parameter β and its range of variation from unity to its maximum value.展开更多
In this note, we recalculate the entropy of the Vaidya black hole on the event horizon by considering the generalized uncertainty principle based on the brick-wall model. The result shows that we need not impose a cut...In this note, we recalculate the entropy of the Vaidya black hole on the event horizon by considering the generalized uncertainty principle based on the brick-wall model. The result shows that we need not impose a cut-off by hand anymore and the result satisfies the Bekenstein-Hawking law as well.展开更多
The spin-one Duffin-Kemmer-Petiau (DKP) oscillator under a magnetic field in the presence of Ihe minimal length in the noncommutative coordinate space is studied by using the momentum space representation. The expli...The spin-one Duffin-Kemmer-Petiau (DKP) oscillator under a magnetic field in the presence of Ihe minimal length in the noncommutative coordinate space is studied by using the momentum space representation. The explicit form of energy eigenvalues is found, and the eigenfunctions are obtained in terms of the Jacobi polynomials. It shows that for the same azimuthal quantum number, the energy E increases monotonically with respect to the noncomnmtative parameter and the minimal length parameter. Additionally, we also report some special cases aiming to discuss the effect of the noncommutative coordinate space and the minimal length in the energy spectrum.展开更多
The single neutral spin-half particle with electric dipole moment and magnetic dipole moment moving in an external electromagnetic field is studied. The Aharonov-Casher effect and He-McKellar-Wilkens effect are emphat...The single neutral spin-half particle with electric dipole moment and magnetic dipole moment moving in an external electromagnetic field is studied. The Aharonov-Casher effect and He-McKellar-Wilkens effect are emphatically discussed in noncommutative(NC) space with minimal length. The energy eigenvalues of the systems are obtained exactly in terms of the Jacobi polynomials. Additionally, a special case is discussed and the related energy spectra are plotted.展开更多
In this paper, the effects of the minimum lengths () to the efficiency of a quantum heat engine are considered. A particle in infinite one-dimensional potential well is used as the “working substance”. We obtain qua...In this paper, the effects of the minimum lengths () to the efficiency of a quantum heat engine are considered. A particle in infinite one-dimensional potential well is used as the “working substance”. We obtain quantized energy of particle in the presence of minimal length, and then we do the isoenergetic cycle. We calculate heat exchanged between the system and reservoir, and then we get the efficiency of the engine. We observe that the minimum length increases efficiency of the engine at the small width of the potential well.展开更多
Using the momentum space representation, we solve the Klein--Gordon equation in one spatial dimension for the case of mixed scalar and vector linear potentials in the context of deformed quantum mechanics characterize...Using the momentum space representation, we solve the Klein--Gordon equation in one spatial dimension for the case of mixed scalar and vector linear potentials in the context of deformed quantum mechanics characterized by a finite minimal uncertainty in position. The expressions of bound state energies and the associated wave functions are exactly obtained.展开更多
文摘The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are approximately equal to the Planck length. In this context, we have introduced a model that utilizes a combination of Schwarzschild’s radius and Compton length to quantify the gravitational length of an object. This model has provided a novel perspective in generalizing the uncertainty principle. Furthermore, it has elucidated the significance of the deforming linear parameter β and its range of variation from unity to its maximum value.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11675139,11605137,11435006,11405130the Double First-Class University Construction Project of Northwest University+1 种基金the China Postdoctoral Science Foundation under Grant No.2017M623219Shaanxi Postdoctoral Science Foundation
文摘In this note, we recalculate the entropy of the Vaidya black hole on the event horizon by considering the generalized uncertainty principle based on the brick-wall model. The result shows that we need not impose a cut-off by hand anymore and the result satisfies the Bekenstein-Hawking law as well.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11465006 and 11565009)the Project of Research Foundation for Graduate Students in Guizhou Province,China(Grant No.(2017)11108)
文摘The spin-one Duffin-Kemmer-Petiau (DKP) oscillator under a magnetic field in the presence of Ihe minimal length in the noncommutative coordinate space is studied by using the momentum space representation. The explicit form of energy eigenvalues is found, and the eigenfunctions are obtained in terms of the Jacobi polynomials. It shows that for the same azimuthal quantum number, the energy E increases monotonically with respect to the noncomnmtative parameter and the minimal length parameter. Additionally, we also report some special cases aiming to discuss the effect of the noncommutative coordinate space and the minimal length in the energy spectrum.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11465006 and 11565009
文摘The single neutral spin-half particle with electric dipole moment and magnetic dipole moment moving in an external electromagnetic field is studied. The Aharonov-Casher effect and He-McKellar-Wilkens effect are emphatically discussed in noncommutative(NC) space with minimal length. The energy eigenvalues of the systems are obtained exactly in terms of the Jacobi polynomials. Additionally, a special case is discussed and the related energy spectra are plotted.
文摘In this paper, the effects of the minimum lengths () to the efficiency of a quantum heat engine are considered. A particle in infinite one-dimensional potential well is used as the “working substance”. We obtain quantized energy of particle in the presence of minimal length, and then we do the isoenergetic cycle. We calculate heat exchanged between the system and reservoir, and then we get the efficiency of the engine. We observe that the minimum length increases efficiency of the engine at the small width of the potential well.
文摘Using the momentum space representation, we solve the Klein--Gordon equation in one spatial dimension for the case of mixed scalar and vector linear potentials in the context of deformed quantum mechanics characterized by a finite minimal uncertainty in position. The expressions of bound state energies and the associated wave functions are exactly obtained.