Conventional mining practices do not extract all mineralized rocks due to prevailing economics.Improvement in mineral prices and processing recovery(technology)could potentially make mineralized waste rocks profitable...Conventional mining practices do not extract all mineralized rocks due to prevailing economics.Improvement in mineral prices and processing recovery(technology)could potentially make mineralized waste rocks profitable.A well-integrated mining strategy that focuses on both economic and physical resource depletion is vital to the management of non-renewable mineral resources.In this paper,a conceptual framework that maximizes the benefits of mining and processing mineralized waste rocks as future resource is proposed.Governmental policy and technical reforms that ensure mining companies incorporate the proposed mineralized waste rocks management framework in their long-term strategic mine plans have been recommended.展开更多
在序批式厌氧反应器中探究了矿化垃圾对污泥厌氧消化产甲烷的影响。实验结果表明,矿化垃圾能够提高甲烷的产量并且提高甲烷的体积分数。当矿化垃圾投加量由0增加到5 g·L^(-1)时,甲烷的产量也由168.9 m L·(g VSS)-1(挥发性悬...在序批式厌氧反应器中探究了矿化垃圾对污泥厌氧消化产甲烷的影响。实验结果表明,矿化垃圾能够提高甲烷的产量并且提高甲烷的体积分数。当矿化垃圾投加量由0增加到5 g·L^(-1)时,甲烷的产量也由168.9 m L·(g VSS)-1(挥发性悬浮固体)增加到218.6 m L·(g VSS)-1,体积分数由60%增加至70%。然而继续提高矿化垃圾的投加量至7 g·L^(-1)对污泥厌氧消化造成一定的抑制作用。矿化垃圾的存在能够提高污泥中溶解性化学需氧量(SCOD)的溶出,挥发性脂肪酸的积累进而为产甲烷菌提供了充足的消化底物,从而提高了甲烷的产量。展开更多
基金supported by the Ontario Trillium Scholarship ProgramIAMGOLD Corporation and Natural Sciences and Engineering Research Council of Canada (DG#: RGPIN-2016-05707 CRD#: CRDPJ 500546-16)
文摘Conventional mining practices do not extract all mineralized rocks due to prevailing economics.Improvement in mineral prices and processing recovery(technology)could potentially make mineralized waste rocks profitable.A well-integrated mining strategy that focuses on both economic and physical resource depletion is vital to the management of non-renewable mineral resources.In this paper,a conceptual framework that maximizes the benefits of mining and processing mineralized waste rocks as future resource is proposed.Governmental policy and technical reforms that ensure mining companies incorporate the proposed mineralized waste rocks management framework in their long-term strategic mine plans have been recommended.
文摘在序批式厌氧反应器中探究了矿化垃圾对污泥厌氧消化产甲烷的影响。实验结果表明,矿化垃圾能够提高甲烷的产量并且提高甲烷的体积分数。当矿化垃圾投加量由0增加到5 g·L^(-1)时,甲烷的产量也由168.9 m L·(g VSS)-1(挥发性悬浮固体)增加到218.6 m L·(g VSS)-1,体积分数由60%增加至70%。然而继续提高矿化垃圾的投加量至7 g·L^(-1)对污泥厌氧消化造成一定的抑制作用。矿化垃圾的存在能够提高污泥中溶解性化学需氧量(SCOD)的溶出,挥发性脂肪酸的积累进而为产甲烷菌提供了充足的消化底物,从而提高了甲烷的产量。