Modification of biomaterials surface by mimetic cell membrane for improving biocompatibility, to imitate the excellent biological and physiological proper- ties of the natural cell membrane, is an important research a...Modification of biomaterials surface by mimetic cell membrane for improving biocompatibility, to imitate the excellent biological and physiological proper- ties of the natural cell membrane, is an important research area in materials science. Numerous studies have been attempted to construct a mimetic cell membrane biointer- face composed of phosphorylcholine (PC)-containing polymers or other phospholipid analogues on biomaterials surface. PC-containing biointerfaces show outstanding characteristics, especially in biological aspects such as blood compatibility and antifouling property. In this mini-review, the strategies of membrane mimetic modification of biomaterials and their antifouling applications are summarized.展开更多
基金The authors gratefully acknowledge the financial support of the National Basic Research Program of China (Grant No. 2012CB619100) and the National Natural Science Foundation of China (Grant Nos. 51372087, 51232002, and 51072055).
文摘Modification of biomaterials surface by mimetic cell membrane for improving biocompatibility, to imitate the excellent biological and physiological proper- ties of the natural cell membrane, is an important research area in materials science. Numerous studies have been attempted to construct a mimetic cell membrane biointer- face composed of phosphorylcholine (PC)-containing polymers or other phospholipid analogues on biomaterials surface. PC-containing biointerfaces show outstanding characteristics, especially in biological aspects such as blood compatibility and antifouling property. In this mini-review, the strategies of membrane mimetic modification of biomaterials and their antifouling applications are summarized.