针对军事领域的命名实体识别问题,提出一种基于BiLSTM-CRF的实体识别方法,旨在识别军事文本中的人名、军用地名、军事机构名、武器装备、设施目标、部队番号等军事命名实体。使用词嵌入方法自动学习中文字符的分布式表示作为模型输入;...针对军事领域的命名实体识别问题,提出一种基于BiLSTM-CRF的实体识别方法,旨在识别军事文本中的人名、军用地名、军事机构名、武器装备、设施目标、部队番号等军事命名实体。使用词嵌入方法自动学习中文字符的分布式表示作为模型输入;利用双向长短时记忆(Bi-directional Long-Short Term Memory,BiLSTM)神经网络处理输入的字符向量序列,统筹上下文语义学习任务特征;将学习到的特征接入线性链式条件随机场(CRF)进行军事命名实体标注,获得命名实体识别结果并输出。在人工构建数据集上的实验结果表明,提出的方法能够很好地完成军事命名实体识别任务。展开更多
文摘针对军事领域的命名实体识别问题,提出一种基于BiLSTM-CRF的实体识别方法,旨在识别军事文本中的人名、军用地名、军事机构名、武器装备、设施目标、部队番号等军事命名实体。使用词嵌入方法自动学习中文字符的分布式表示作为模型输入;利用双向长短时记忆(Bi-directional Long-Short Term Memory,BiLSTM)神经网络处理输入的字符向量序列,统筹上下文语义学习任务特征;将学习到的特征接入线性链式条件随机场(CRF)进行军事命名实体标注,获得命名实体识别结果并输出。在人工构建数据集上的实验结果表明,提出的方法能够很好地完成军事命名实体识别任务。