Abstract Lesion of ossicular chain is a common ear disease impairing the sense of hearing. A comprehensive numerical model of human ear can provide better understanding of sound transmission. In this study, we propose...Abstract Lesion of ossicular chain is a common ear disease impairing the sense of hearing. A comprehensive numerical model of human ear can provide better understanding of sound transmission. In this study, we propose a three-dimensional finite element model of human ear that incorporates the canal, tympanic membrane, ossicular bones, middle ear suspensory ligaments/muscles, middle ear cavity and inner ear fluid. Numerical analysis is conducted and employed to predict the effects of middle ear cavity, malleus handle defect, hypoplasia of the long process of incus, and stapedial crus defect on sound transmission. The present finite element model is shown to be reasonable in predicting the ossicular mechanics of human ear.展开更多
Objective: The aim of the present study was to evaluate the structural variations of nasal cavity in reference to frequency and types at the key area i.e. the ostiomeatal complex. Materials and Methods: Computed tomog...Objective: The aim of the present study was to evaluate the structural variations of nasal cavity in reference to frequency and types at the key area i.e. the ostiomeatal complex. Materials and Methods: Computed tomography of Paranasal sinuses of 50 patients was studied for clinical suspicion of various sinonasal pathologies. Results: The most commonly encountered anatomical variations in this study were Deviated Nasal Septum in 78% (39 patients), followed by Concha Bullosa in 36% (18 patients), Agger Nasi cell in 18% (nine patients), Pneumatised septum in 12% (six patients), Paradoxical Middle Turbinate and Septated Maxillary Sinus in 10% (five patients each) and Pneumatised Uncinate Process 6% (three patients). In quite a few patients we witnessed more than one variation. Conclusion: The anatomical variations in the nose and ostiomeatal complex are not uncommon, with the most frequent ones involving the nasal septum and the middle turbinate.展开更多
基金supported by the National Natural Science Foundation of China (10472025, 10672036, and 10872043)
文摘Abstract Lesion of ossicular chain is a common ear disease impairing the sense of hearing. A comprehensive numerical model of human ear can provide better understanding of sound transmission. In this study, we propose a three-dimensional finite element model of human ear that incorporates the canal, tympanic membrane, ossicular bones, middle ear suspensory ligaments/muscles, middle ear cavity and inner ear fluid. Numerical analysis is conducted and employed to predict the effects of middle ear cavity, malleus handle defect, hypoplasia of the long process of incus, and stapedial crus defect on sound transmission. The present finite element model is shown to be reasonable in predicting the ossicular mechanics of human ear.
文摘Objective: The aim of the present study was to evaluate the structural variations of nasal cavity in reference to frequency and types at the key area i.e. the ostiomeatal complex. Materials and Methods: Computed tomography of Paranasal sinuses of 50 patients was studied for clinical suspicion of various sinonasal pathologies. Results: The most commonly encountered anatomical variations in this study were Deviated Nasal Septum in 78% (39 patients), followed by Concha Bullosa in 36% (18 patients), Agger Nasi cell in 18% (nine patients), Pneumatised septum in 12% (six patients), Paradoxical Middle Turbinate and Septated Maxillary Sinus in 10% (five patients each) and Pneumatised Uncinate Process 6% (three patients). In quite a few patients we witnessed more than one variation. Conclusion: The anatomical variations in the nose and ostiomeatal complex are not uncommon, with the most frequent ones involving the nasal septum and the middle turbinate.