High-resolution oxygen isotope records over the last 2249 ka (MIS 1-86) have been obtained from cores of the upper section (105.08 m) at ODP Site 1143 (water depth of 2772 m)drilled in the Nansha area, southern South ...High-resolution oxygen isotope records over the last 2249 ka (MIS 1-86) have been obtained from cores of the upper section (105.08 m) at ODP Site 1143 (water depth of 2772 m)drilled in the Nansha area, southern South China Sea. The sampling resolution is at about 2 ka intervals, resulting in one of the best oxygen isotope records over the global ocean. The oxygen isotope curves, displaying details in the Pleistocene glacial cycles, have revealed a nearly 300 ka long stage of transition from a predominant 40 ka to 100 ka periodicity. Therefore, the 'Mid-Pleistocene Revolution' should be considered as a process of transition rather than an abrupt change. Within the 100 ka glacial cycles, the changes in tropical sea surface water were found to lead those in high-latitude ice sheet. Our comparisons show that the ice sheet expansion and the glacial stage extension in the Northern Hemisphere with the 100 ka cycles must have been driven not by ice sheet itself, but by processes outside the high latitudes of the Northern Hemisphere.展开更多
The mid-Pleistocene vermiculated red soils (VRS) from Xuancheng (Anhui Province) and Bose (Guangxi) are studied through soil micromor- phological, mineralogical and chemical approaches. The results indicate a polygene...The mid-Pleistocene vermiculated red soils (VRS) from Xuancheng (Anhui Province) and Bose (Guangxi) are studied through soil micromor- phological, mineralogical and chemical approaches. The results indicate a polygenetic nature of the VRS, having experienced multiple soil-forming stages. Three main stages have been recognized, attribut- able to distinct climate regimes. They include the formation of the homogeneous matrix of a red soil (stage 1), development of the white veins within the soil profile (stage 2), and formation of juxtaposed textural features (stage 3). The white veins, resulting from iron-depletion in the groundmass of the homo- geneous matrix of a red soil, required abundant rainfall without significant seasonal desiccations. The geographically widely spread VRS south of the Yangtze River in China implies a Mid-Pleistocene extreme East Asian summer monsoon. This climate extreme might be closely linked with the changes in the strength of NADW.展开更多
Based on a detailed study of the radiolarian fauna, the abundance pattern of planktic foraminifera as well as on isotope and sedimentological records, the Mid-Pleistocene climate transition as a multiple transition ph...Based on a detailed study of the radiolarian fauna, the abundance pattern of planktic foraminifera as well as on isotope and sedimentological records, the Mid-Pleistocene climate transition as a multiple transition phenomenon could be recognized at Core 17957-2 from the South China Sea. Distinct changes in the radiolarian/foraminfera ratio, the coarse fraction and the radiolarian assemblages can be related to the global climate cooling observed at the Mid-Pleistocene revolution (MPR) around 900 ka. A pronounced southward shift of the North Equatorial Current that leads to lower sea-surface temperatures in the South China Sea is documented by the shift of tropical to subtropical radiolarian assemblages at 900 ka. Increasing radiolarian abundance after the MPR can be interpreted as a result of stronger upwelling and nutrient supply. These abrupt variations could result from the northern trade wind system and East Asian monsoon circulation.展开更多
The incision of the Sanmen Gorge marks the birth of the modern Yellow River,but its timing varies from the late Miocene-early Pliocene to the late Pleistocene(~0.15 Ma),and the suggested forcing mechanisms vary from t...The incision of the Sanmen Gorge marks the birth of the modern Yellow River,but its timing varies from the late Miocene-early Pliocene to the late Pleistocene(~0.15 Ma),and the suggested forcing mechanisms vary from the uplift of the Tibetan Plateau to global climate change.Here,we report sedimentologic,geochronologic,and provenance data from a drill core near the Sanmen Gorge,the last gorge along the main course of the Yellow River.Our results indicate that typical river channel deposits,with detritus from the Ordos Block in the upstream regions,started to accumulate in the Sanmen Gorge at~1.25 Ma.When integrated with river terrace evidence from the upstream and downstream regions,the results provide robust evidence that the final integration of the modern Yellow River occurred at~1.25 Ma,consistent with the beginning of the Mid-Pleistocene transition(MPT).We propose that the accelerated lowering of eustatic sea level during the MPT may play as important a role as tectonism in driving the birth and evolution of the modern Yellow River.展开更多
At about 173 ka BP of the late period of mid-Pleistocene, the second terrace of the river had been formed as a result of uplift happening in Shangshan area because of the climate, sea level change and tectonic action....At about 173 ka BP of the late period of mid-Pleistocene, the second terrace of the river had been formed as a result of uplift happening in Shangshan area because of the climate, sea level change and tectonic action. Between 173-75 ka BP, aeolian deposited on the terrace, a layer of reticulate red clayey soil about 80-100 cm thick deposited and developed under the warmer and higher temperature. In the last glacial period, the drop of the temperature and the decrease of the precipitation induced the dust-storms increased, A layer of Xiashu loess about 1.0-1.5 m thick accumulated on Shangshan terrace in the last glacial, which has the reticulate red clayey soil buried. At the beginning of the Holocene (11500 a BP-), temperature went higher gradually and precipitation got more, the pre-persons moved on the Shangshan terrace (11,400-8600 a BP), which is one of the most important archaeological sites, and can connect the paleolithic culture with Neolithic culture. It could be assumed from the results that the lower reaches of the Yangtze River are the home of rice cultivation, too. The lower place to the west of the Shangshan site experienced the two cycles process of the fluvial facies and the lacustrine facies, indicating that the water source of the pre-historical Shangshan is the river water or lake water. Two AMS 14C age proved the water source disappeared more than 1000 years ago.展开更多
The present study confirms the stratigraphical position of microtektite layer being clearly located below the Brunhes/Matuyama (B/M) boundary. Based on the sedimentation rate derived from the stable isotopic and magne...The present study confirms the stratigraphical position of microtektite layer being clearly located below the Brunhes/Matuyama (B/M) boundary. Based on the sedimentation rate derived from the stable isotopic and magnetic data of ODP Site 772A, cores 17957 and 17959 in the South China Sea, the age of the mid-Pleistocene impact event was estimated at 10-12 ka earlier than the Brunhes-Matuyama polarity reversal. However, the microtektites were found above the measured B/M boundary in the loess profile due to the downward deviation of the measured B/M boundary from its true position. This demonstrates the complexity of paleo-magnetic records in the loess profiles which, in turn, causes the confusion in the sea-land stratigraphic correlation.展开更多
基金the National Natural Science Foundation of China (Grant No. 49999560) and NKBRSF Project (Grant No. 2000078500).
文摘High-resolution oxygen isotope records over the last 2249 ka (MIS 1-86) have been obtained from cores of the upper section (105.08 m) at ODP Site 1143 (water depth of 2772 m)drilled in the Nansha area, southern South China Sea. The sampling resolution is at about 2 ka intervals, resulting in one of the best oxygen isotope records over the global ocean. The oxygen isotope curves, displaying details in the Pleistocene glacial cycles, have revealed a nearly 300 ka long stage of transition from a predominant 40 ka to 100 ka periodicity. Therefore, the 'Mid-Pleistocene Revolution' should be considered as a process of transition rather than an abrupt change. Within the 100 ka glacial cycles, the changes in tropical sea surface water were found to lead those in high-latitude ice sheet. Our comparisons show that the ice sheet expansion and the glacial stage extension in the Northern Hemisphere with the 100 ka cycles must have been driven not by ice sheet itself, but by processes outside the high latitudes of the Northern Hemisphere.
基金Dr.Hao Qingzhen,Qiao Yansong and Wei Jianjing participated in the filed investigations and sample collection.The authors thank Profs.Yuan Baoyin,Huang Weiwen,Hou Yamei and Wang Wei for help during the field investigations at Bose.Yin Qiuzhen thanks Dr.Peng Shuzhen for help in XRD analyses.This work was supported by Chinese Academy of Sciences(Grant Nos.KZCX2-SW-133 and KZCX3-SW-139)the National Natural Science Foundation of China(Grant Nos.40231001,40121303).
文摘The mid-Pleistocene vermiculated red soils (VRS) from Xuancheng (Anhui Province) and Bose (Guangxi) are studied through soil micromor- phological, mineralogical and chemical approaches. The results indicate a polygenetic nature of the VRS, having experienced multiple soil-forming stages. Three main stages have been recognized, attribut- able to distinct climate regimes. They include the formation of the homogeneous matrix of a red soil (stage 1), development of the white veins within the soil profile (stage 2), and formation of juxtaposed textural features (stage 3). The white veins, resulting from iron-depletion in the groundmass of the homo- geneous matrix of a red soil, required abundant rainfall without significant seasonal desiccations. The geographically widely spread VRS south of the Yangtze River in China implies a Mid-Pleistocene extreme East Asian summer monsoon. This climate extreme might be closely linked with the changes in the strength of NADW.
文摘Based on a detailed study of the radiolarian fauna, the abundance pattern of planktic foraminifera as well as on isotope and sedimentological records, the Mid-Pleistocene climate transition as a multiple transition phenomenon could be recognized at Core 17957-2 from the South China Sea. Distinct changes in the radiolarian/foraminfera ratio, the coarse fraction and the radiolarian assemblages can be related to the global climate cooling observed at the Mid-Pleistocene revolution (MPR) around 900 ka. A pronounced southward shift of the North Equatorial Current that leads to lower sea-surface temperatures in the South China Sea is documented by the shift of tropical to subtropical radiolarian assemblages at 900 ka. Increasing radiolarian abundance after the MPR can be interpreted as a result of stronger upwelling and nutrient supply. These abrupt variations could result from the northern trade wind system and East Asian monsoon circulation.
基金supported by the Fundamental Research Funds for the Central Universities,China(lzujbky-2021-ey12)the National Natural Science Foundation of China(42072211)+1 种基金the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0602)the National Non-Profit Fundamental Research Grant of China(IGCEA 2008)。
文摘The incision of the Sanmen Gorge marks the birth of the modern Yellow River,but its timing varies from the late Miocene-early Pliocene to the late Pleistocene(~0.15 Ma),and the suggested forcing mechanisms vary from the uplift of the Tibetan Plateau to global climate change.Here,we report sedimentologic,geochronologic,and provenance data from a drill core near the Sanmen Gorge,the last gorge along the main course of the Yellow River.Our results indicate that typical river channel deposits,with detritus from the Ordos Block in the upstream regions,started to accumulate in the Sanmen Gorge at~1.25 Ma.When integrated with river terrace evidence from the upstream and downstream regions,the results provide robust evidence that the final integration of the modern Yellow River occurred at~1.25 Ma,consistent with the beginning of the Mid-Pleistocene transition(MPT).We propose that the accelerated lowering of eustatic sea level during the MPT may play as important a role as tectonism in driving the birth and evolution of the modern Yellow River.
基金National Science and Technology Support Program, No.2006BAK21B02 National Basic Research Program of China, No.2003CB415201 National Natural Science Foundation of China, No.40671016
文摘At about 173 ka BP of the late period of mid-Pleistocene, the second terrace of the river had been formed as a result of uplift happening in Shangshan area because of the climate, sea level change and tectonic action. Between 173-75 ka BP, aeolian deposited on the terrace, a layer of reticulate red clayey soil about 80-100 cm thick deposited and developed under the warmer and higher temperature. In the last glacial period, the drop of the temperature and the decrease of the precipitation induced the dust-storms increased, A layer of Xiashu loess about 1.0-1.5 m thick accumulated on Shangshan terrace in the last glacial, which has the reticulate red clayey soil buried. At the beginning of the Holocene (11500 a BP-), temperature went higher gradually and precipitation got more, the pre-persons moved on the Shangshan terrace (11,400-8600 a BP), which is one of the most important archaeological sites, and can connect the paleolithic culture with Neolithic culture. It could be assumed from the results that the lower reaches of the Yangtze River are the home of rice cultivation, too. The lower place to the west of the Shangshan site experienced the two cycles process of the fluvial facies and the lacustrine facies, indicating that the water source of the pre-historical Shangshan is the river water or lake water. Two AMS 14C age proved the water source disappeared more than 1000 years ago.
文摘The present study confirms the stratigraphical position of microtektite layer being clearly located below the Brunhes/Matuyama (B/M) boundary. Based on the sedimentation rate derived from the stable isotopic and magnetic data of ODP Site 772A, cores 17957 and 17959 in the South China Sea, the age of the mid-Pleistocene impact event was estimated at 10-12 ka earlier than the Brunhes-Matuyama polarity reversal. However, the microtektites were found above the measured B/M boundary in the loess profile due to the downward deviation of the measured B/M boundary from its true position. This demonstrates the complexity of paleo-magnetic records in the loess profiles which, in turn, causes the confusion in the sea-land stratigraphic correlation.