Superhydrophobicity is referred to the wet- tability of a solid surface which has a water apparent contact angle greater than 150 . It has attracted great interest in both fundamental researches and practical applicat...Superhydrophobicity is referred to the wet- tability of a solid surface which has a water apparent contact angle greater than 150 . It has attracted great interest in both fundamental researches and practical applications. This pa- per discusses two models: Wenzel model and Cassie model, to describe the superhydrophobic states of surface. The ef- fects of surface morphology and microstructure on superhy- drophobicity are discussed, and the internal relationship between Wenzel and Cassie states is presented. These two superhydrophobic states can coexist and they present differ- ent properties on contact angle hysteresis. It is reported that the irreversible transition can be realized from Cassie state to Wenzel state under some certain conditions. This paper also gives a review of recent progresses in the strategies of fabricating superhydrophobic surfaces by designing micro- structured or microtextured surfaces. Finally, the funda- mental research and applications of superhydrophobic sur- faces are prospected.展开更多
Wetting is one of the omnipresent phenomena governed via natural laws. Moreover, surface wettability at non-ambient temperature especially at high temperature (30°C to 90°C) is of great importance in many in...Wetting is one of the omnipresent phenomena governed via natural laws. Moreover, surface wettability at non-ambient temperature especially at high temperature (30°C to 90°C) is of great importance in many industrial processes. In this study, Si wafers with various structures were fabricated to investigate wettability at different temperatures. Three shapes with micro-pillar structured surfaces were designed and fabricated. Pillar-structured surfaces were fabricated by photolithography and ICP etching. The temperature-dependent wettability of single-phase regime droplets was characterized using contact angle measurements. The wetting behavior of a water droplet was observed.展开更多
A material-structure integrated design method is proposed in this paper,with which micropillar and microwedge arrayed surfaces are fabricated based on a novel nanoparticlereinforced silicone rubber composite(NRSRC)wit...A material-structure integrated design method is proposed in this paper,with which micropillar and microwedge arrayed surfaces are fabricated based on a novel nanoparticlereinforced silicone rubber composite(NRSRC)with high mechanical strength and strong surface adhesion.It is found that the micropillar-arrayed surface and the microwedgearrayed surface show a normal adhesive strength of 50.9 kPa and a shear adhesive strength of 137.3 kPa,respectively,which are much higher than those of previously reported adhesive surfaces made by pure soft polymers.Furthermore,the micro-wedgearrayed surface shows not only strong and stable adhe-sion on rough and smooth substrates but also an obvious anisotropy in the adhesion property.The latter consequently leads to an easy control of the attachment/detachment switch,which is evidenced by a mechanical gripper with a microwedged surface.Therefore,firmly picking up and easily releasing a heavy glass plate can be realized.All these results demonstrate the apparent advantages of the present compo-sitebased fibrillar surfaces in achieving reliable and reversible adhesion and should have promising applications for manufac-turing advanced adhesive devices,such as mechanical fixtures,portable climbing equipment and space robots.展开更多
A novel design is proposed for highly sensitive surface-plasmon-resonance sensors. The sensor is based on a microstructured optical fiber with two layers of annular-shaped holes. A gold layer is deposited on the inner...A novel design is proposed for highly sensitive surface-plasmon-resonance sensors. The sensor is based on a microstructured optical fiber with two layers of annular-shaped holes. A gold layer is deposited on the inner surface of the second hole-layer, in which the holes have several micrometers thickness in size, facilitating analyte infiltration and metal layer deposition. In the first layer of holes, the sector-ring^shaped arms, used as supporting strips, are utilized to tune the resonance depth of the sensor. Numerical results indicate that the sensor operation wavelength can be tuned across the C+L-band. The spectral sensitivity of 1.0.104 nm. RIU-1 order of magnitude and a detection limit of 1.0.10-4 RIU order are demonstrated over a wide range of analyte refractive index from 1.320 to 1.335.展开更多
Microstructured metallic gratings can be used to enhance the light emission efficiency of LEDs,and the spectral radiation properties of the LEDs vary with the different metallic materials used,leading to variation of ...Microstructured metallic gratings can be used to enhance the light emission efficiency of LEDs,and the spectral radiation properties of the LEDs vary with the different metallic materials used,leading to variation of the light emission enhancement at the same wavelength for different metallic grating materials.In this paper,the finite difference time domain(FDTD) method has been used to investigate the light emission extraction enhancement of LEDs in which gratings with different metallic materials have been applied.Through analysis of the permittivity of the metals and the quality factors of the surface plasmons(SPs),we concluded that the larger the plasma frequency obtained for the metallic interband transition,then the more suitable the metals are for light emission extraction of photons with relatively short wavelengths.This is because of the abundance of free electrons in the metals with large plasma frequencies.We also found that the wavelength-dependent trends of the extraction enhancement resulting from the scattering mechanism for different metallic materials are similar to each other.For SP-induced enhancement,either the enhancement peak position or the peak value changes significantly with the different metals.展开更多
文摘Superhydrophobicity is referred to the wet- tability of a solid surface which has a water apparent contact angle greater than 150 . It has attracted great interest in both fundamental researches and practical applications. This pa- per discusses two models: Wenzel model and Cassie model, to describe the superhydrophobic states of surface. The ef- fects of surface morphology and microstructure on superhy- drophobicity are discussed, and the internal relationship between Wenzel and Cassie states is presented. These two superhydrophobic states can coexist and they present differ- ent properties on contact angle hysteresis. It is reported that the irreversible transition can be realized from Cassie state to Wenzel state under some certain conditions. This paper also gives a review of recent progresses in the strategies of fabricating superhydrophobic surfaces by designing micro- structured or microtextured surfaces. Finally, the funda- mental research and applications of superhydrophobic sur- faces are prospected.
文摘Wetting is one of the omnipresent phenomena governed via natural laws. Moreover, surface wettability at non-ambient temperature especially at high temperature (30°C to 90°C) is of great importance in many industrial processes. In this study, Si wafers with various structures were fabricated to investigate wettability at different temperatures. Three shapes with micro-pillar structured surfaces were designed and fabricated. Pillar-structured surfaces were fabricated by photolithography and ICP etching. The temperature-dependent wettability of single-phase regime droplets was characterized using contact angle measurements. The wetting behavior of a water droplet was observed.
基金NSFC through Grants(No.12032004,No.12293000,No.12293002,No.12272043)Natural Science Foundation of Henan(No.202300410088)as well as Innovation Demonstration Project of Henan(No.201111211400).
文摘A material-structure integrated design method is proposed in this paper,with which micropillar and microwedge arrayed surfaces are fabricated based on a novel nanoparticlereinforced silicone rubber composite(NRSRC)with high mechanical strength and strong surface adhesion.It is found that the micropillar-arrayed surface and the microwedgearrayed surface show a normal adhesive strength of 50.9 kPa and a shear adhesive strength of 137.3 kPa,respectively,which are much higher than those of previously reported adhesive surfaces made by pure soft polymers.Furthermore,the micro-wedgearrayed surface shows not only strong and stable adhe-sion on rough and smooth substrates but also an obvious anisotropy in the adhesion property.The latter consequently leads to an easy control of the attachment/detachment switch,which is evidenced by a mechanical gripper with a microwedged surface.Therefore,firmly picking up and easily releasing a heavy glass plate can be realized.All these results demonstrate the apparent advantages of the present compo-sitebased fibrillar surfaces in achieving reliable and reversible adhesion and should have promising applications for manufac-turing advanced adhesive devices,such as mechanical fixtures,portable climbing equipment and space robots.
基金supported by the Program Sponsored for Scientific Innovation Research of College Graduates in Jangsu Province,China(No.CXZZ12 0656)the Qing Lan Project of Jiangsu Province,Open Fund Supported by Jiangsu Provincial Key Laboratory for Science and Technology of Photon Manufacturing(Jiangsu University)of China(No.GZ201201)
文摘A novel design is proposed for highly sensitive surface-plasmon-resonance sensors. The sensor is based on a microstructured optical fiber with two layers of annular-shaped holes. A gold layer is deposited on the inner surface of the second hole-layer, in which the holes have several micrometers thickness in size, facilitating analyte infiltration and metal layer deposition. In the first layer of holes, the sector-ring^shaped arms, used as supporting strips, are utilized to tune the resonance depth of the sensor. Numerical results indicate that the sensor operation wavelength can be tuned across the C+L-band. The spectral sensitivity of 1.0.104 nm. RIU-1 order of magnitude and a detection limit of 1.0.10-4 RIU order are demonstrated over a wide range of analyte refractive index from 1.320 to 1.335.
基金This work was supported by the National Natural Science Foundation of China(50936002).
文摘Microstructured metallic gratings can be used to enhance the light emission efficiency of LEDs,and the spectral radiation properties of the LEDs vary with the different metallic materials used,leading to variation of the light emission enhancement at the same wavelength for different metallic grating materials.In this paper,the finite difference time domain(FDTD) method has been used to investigate the light emission extraction enhancement of LEDs in which gratings with different metallic materials have been applied.Through analysis of the permittivity of the metals and the quality factors of the surface plasmons(SPs),we concluded that the larger the plasma frequency obtained for the metallic interband transition,then the more suitable the metals are for light emission extraction of photons with relatively short wavelengths.This is because of the abundance of free electrons in the metals with large plasma frequencies.We also found that the wavelength-dependent trends of the extraction enhancement resulting from the scattering mechanism for different metallic materials are similar to each other.For SP-induced enhancement,either the enhancement peak position or the peak value changes significantly with the different metals.