The location of an acute ischemic stroke is associated with its prognosis. The widely used Gaussian model-based parameter, apparent diffusion coefficient(ADC), cannot reveal microstructural changes in different locati...The location of an acute ischemic stroke is associated with its prognosis. The widely used Gaussian model-based parameter, apparent diffusion coefficient(ADC), cannot reveal microstructural changes in different locations or the degree of infarction. This prospective observational study was reviewed and approved by the Institutional Review Board of Xiamen Second Hospital, China(approval No. 2014002).Diffusion kurtosis imaging(DKI) was used to detect 199 lesions in 156 patients with acute ischemic stroke(61 males and 95 females), mean age 63.15 ± 12.34 years. A total of 199 lesions were located in the periventricular white matter(n = 52), corpus callosum(n = 14), cerebellum(n = 29), basal ganglia and thalamus(n = 21), brainstem(n = 21) and gray-white matter junctions(n = 62). Percentage changes of apparent diffusion coefficient(ΔADC) and DKI-derived indices(fractional anisotropy [ΔFA], mean diffusivity [ΔMD], axial diffusivity [ΔD_a], radial diffusivity ΔDr, mean kurtosis [ΔMK], axial kurtosis [ΔK_a], and radial kurtosis [ΔK_r]) of each lesion were computed relative to the normal contralateral region. The results showed that(1) there was no significant difference in ΔADC, ΔMD, ΔD_a or ΔD_r among almost all locations.(2) There was significant difference in ΔMK among almost all locations(except basal ganglia and thalamus vs. brain stem; basal ganglia and thalamus vs. gray-white matter junctions; and brainstem vs. gray-white matter junctions.(3) The degree of change in diffusional kurtosis in descending order was as follows: corpus callosum > periventricular white matter > brainstem > gray-white matter junctions > basal ganglia and thalamus > cerebellum. In conclusion, DKI could reveal the differences in microstructure changes among various locations affected by acute ischemic stroke, and performed better than diffusivity among all groups.展开更多
The microstructure characteristics and meso-defect volume changes of hardened cement paste before and after carbonation were investigated by three-dimensional (3D) X-ray computed tomograpby (XCT), where three type...The microstructure characteristics and meso-defect volume changes of hardened cement paste before and after carbonation were investigated by three-dimensional (3D) X-ray computed tomograpby (XCT), where three types water-to-cement ratio of 0.53, 0.35 and 0.23 were considered. The high-resolution 3D images of microstructure and filtered defects were reconstructed by an XCT VG Studio MAX 2.0 software, The meso- defect volume fractions and size distribution were analyzed based on 3D images through add-on modules of 3D defect analysis. The 3D meso-defects volume fractions before carbonation were 0.79%, 0.38% and 0.05% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The 3D meso-defects volume fractions after carbonation were 2.44%, 0.91% and 0.14% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The experimental results suggest that 3D meso-defects volume fractions after carbonation for above three w/c ratio increased significantly. At the same time, meso-cracks distribution of the carbonation shrinkage and gray values changes of the different w/c ratio and carbonation reactions were also investigated.展开更多
The effect of the mixed rare earths of Ce on the phase transformation in ascast ZA 27 alloy during compressive was investigated under 37 MPa and at 160 deg C by X-raydiffraction technique and SEM. The results showed t...The effect of the mixed rare earths of Ce on the phase transformation in ascast ZA 27 alloy during compressive was investigated under 37 MPa and at 160 deg C by X-raydiffraction technique and SEM. The results showed that the as cast microstructure of ZA 27-RE alloyconsisted of a dendritic Al-rich alpha' surrounded by Zn-rich beta' phase, interdendritic epsilonphase and Zn-rich eta phase together with a complex Z phase which was a complex constitute compound,(RE,Cu)Al_5Zn_(16), dispersed in crystal interfaces or branch crystal interfaces and stable duringcompressive creep test at 160 deg C. The phase transformations of ZA 27-RE alloy, decomposition ofbeta' phase arid four transformation, were delayed by the addition of rare earths, also the lamellarstructure and the spheroidized structure in ZA 27-RE alloy were finer than in ZA 27 alloy duringcompressive creep test at 160 deg C at the same creep time, and the compressive creep resistance ofZA 27-RE alloy was higher than that of ZA 27 alloy.展开更多
基金supported by the Science and Technology Planned Project from Xiamen Science and Technology Bureau,China,No.3502Z20154065(to LHZ)the Joint Project for Xiamen Key Diseases from Xiamen Science and Technology Bureau,China,No.3502Z20149032(to GG)
文摘The location of an acute ischemic stroke is associated with its prognosis. The widely used Gaussian model-based parameter, apparent diffusion coefficient(ADC), cannot reveal microstructural changes in different locations or the degree of infarction. This prospective observational study was reviewed and approved by the Institutional Review Board of Xiamen Second Hospital, China(approval No. 2014002).Diffusion kurtosis imaging(DKI) was used to detect 199 lesions in 156 patients with acute ischemic stroke(61 males and 95 females), mean age 63.15 ± 12.34 years. A total of 199 lesions were located in the periventricular white matter(n = 52), corpus callosum(n = 14), cerebellum(n = 29), basal ganglia and thalamus(n = 21), brainstem(n = 21) and gray-white matter junctions(n = 62). Percentage changes of apparent diffusion coefficient(ΔADC) and DKI-derived indices(fractional anisotropy [ΔFA], mean diffusivity [ΔMD], axial diffusivity [ΔD_a], radial diffusivity ΔDr, mean kurtosis [ΔMK], axial kurtosis [ΔK_a], and radial kurtosis [ΔK_r]) of each lesion were computed relative to the normal contralateral region. The results showed that(1) there was no significant difference in ΔADC, ΔMD, ΔD_a or ΔD_r among almost all locations.(2) There was significant difference in ΔMK among almost all locations(except basal ganglia and thalamus vs. brain stem; basal ganglia and thalamus vs. gray-white matter junctions; and brainstem vs. gray-white matter junctions.(3) The degree of change in diffusional kurtosis in descending order was as follows: corpus callosum > periventricular white matter > brainstem > gray-white matter junctions > basal ganglia and thalamus > cerebellum. In conclusion, DKI could reveal the differences in microstructure changes among various locations affected by acute ischemic stroke, and performed better than diffusivity among all groups.
基金Funded by the Scientific Research Foundation of the Graduate School of Southeast University (YBJJ1113)the National Basic Research Program of China (No.2009CB623200)the National Natural Science Foundation of China (No.51178103)
文摘The microstructure characteristics and meso-defect volume changes of hardened cement paste before and after carbonation were investigated by three-dimensional (3D) X-ray computed tomograpby (XCT), where three types water-to-cement ratio of 0.53, 0.35 and 0.23 were considered. The high-resolution 3D images of microstructure and filtered defects were reconstructed by an XCT VG Studio MAX 2.0 software, The meso- defect volume fractions and size distribution were analyzed based on 3D images through add-on modules of 3D defect analysis. The 3D meso-defects volume fractions before carbonation were 0.79%, 0.38% and 0.05% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The 3D meso-defects volume fractions after carbonation were 2.44%, 0.91% and 0.14% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The experimental results suggest that 3D meso-defects volume fractions after carbonation for above three w/c ratio increased significantly. At the same time, meso-cracks distribution of the carbonation shrinkage and gray values changes of the different w/c ratio and carbonation reactions were also investigated.
文摘The effect of the mixed rare earths of Ce on the phase transformation in ascast ZA 27 alloy during compressive was investigated under 37 MPa and at 160 deg C by X-raydiffraction technique and SEM. The results showed that the as cast microstructure of ZA 27-RE alloyconsisted of a dendritic Al-rich alpha' surrounded by Zn-rich beta' phase, interdendritic epsilonphase and Zn-rich eta phase together with a complex Z phase which was a complex constitute compound,(RE,Cu)Al_5Zn_(16), dispersed in crystal interfaces or branch crystal interfaces and stable duringcompressive creep test at 160 deg C. The phase transformations of ZA 27-RE alloy, decomposition ofbeta' phase arid four transformation, were delayed by the addition of rare earths, also the lamellarstructure and the spheroidized structure in ZA 27-RE alloy were finer than in ZA 27 alloy duringcompressive creep test at 160 deg C at the same creep time, and the compressive creep resistance ofZA 27-RE alloy was higher than that of ZA 27 alloy.