Microseismic technology has been proven to be a practical approach for in-situ monitoring of fracture growth during hydraulic fracture stimulations. Microseismic monitoring has rapidly evolved in acquisition methodolo...Microseismic technology has been proven to be a practical approach for in-situ monitoring of fracture growth during hydraulic fracture stimulations. Microseismic monitoring has rapidly evolved in acquisition methodology, data processing, and in this paper, we evaluate the progression of this technology with emphasis on their applications in Barnett shale gas reservoir. Microseismic data analysis indicates a direct proportion between microseismic moment magnitude and depth, yet no relation between microseismic activity and either injection rate or injection volume has been observed. However, large microseismic magnitudes have been recorded where hydraulic fracturing stimulation approaches a fault and therefore the geologic framework should be integrated in such programs. In addition, the geometry of fracture growth resulted by proppant interactions with naturally fractured formations follows unpredictable fashion due to redirecting the injection fluids along flow paths associated with the pre-existing fault network in the reservoir. While microseismic imaging is incredibly useful in revealing the fracture geometry and the way the fracture evolves, recently several concerns have been raised regarding the capability of microseismic data to provide the fracture dimensional parameters and the fracture mechanism that could provide detailed information for reservoir characterization.展开更多
Petroleum reservoir operations such as oil and gas production, hydraulic fracturing, and water injection induce considerable stress changes that at some point result in rock failure and emanation of seismic energy. Su...Petroleum reservoir operations such as oil and gas production, hydraulic fracturing, and water injection induce considerable stress changes that at some point result in rock failure and emanation of seismic energy. Such seismic energy could be large enough to be felt in the neighborhood of the oil fields, therefore many issues are recently raised regarding its environmental impact. In this research we analyze the magnitudes of microseismicity induced by stimulation of unconventional reservoirs at various basins in the United States and Canada that monitored the microseismicity induced by hydraulic fracturing operations. In addition, the relationship between microseismic magnitude and both depth and injection parameters is examined to delineate the possible framework that controls the system. Generally, microseismicity of typical hydraulic fracturing and injection operations is relatively similar in the majority of basins under investigation and the overall associating seismic energy is not strong enough to be the important factor to jeopardize near surface groundwater resources. Furthermore, these events are less energetic compared to the moderately active tectonic zones through the world and usually do not extend over a long period at considerably deep parts. However, the huge volume of the treatment fluids and improper casing cementing operation seem to be primary sources for contaminating near surface water resources.展开更多
文摘Microseismic technology has been proven to be a practical approach for in-situ monitoring of fracture growth during hydraulic fracture stimulations. Microseismic monitoring has rapidly evolved in acquisition methodology, data processing, and in this paper, we evaluate the progression of this technology with emphasis on their applications in Barnett shale gas reservoir. Microseismic data analysis indicates a direct proportion between microseismic moment magnitude and depth, yet no relation between microseismic activity and either injection rate or injection volume has been observed. However, large microseismic magnitudes have been recorded where hydraulic fracturing stimulation approaches a fault and therefore the geologic framework should be integrated in such programs. In addition, the geometry of fracture growth resulted by proppant interactions with naturally fractured formations follows unpredictable fashion due to redirecting the injection fluids along flow paths associated with the pre-existing fault network in the reservoir. While microseismic imaging is incredibly useful in revealing the fracture geometry and the way the fracture evolves, recently several concerns have been raised regarding the capability of microseismic data to provide the fracture dimensional parameters and the fracture mechanism that could provide detailed information for reservoir characterization.
文摘Petroleum reservoir operations such as oil and gas production, hydraulic fracturing, and water injection induce considerable stress changes that at some point result in rock failure and emanation of seismic energy. Such seismic energy could be large enough to be felt in the neighborhood of the oil fields, therefore many issues are recently raised regarding its environmental impact. In this research we analyze the magnitudes of microseismicity induced by stimulation of unconventional reservoirs at various basins in the United States and Canada that monitored the microseismicity induced by hydraulic fracturing operations. In addition, the relationship between microseismic magnitude and both depth and injection parameters is examined to delineate the possible framework that controls the system. Generally, microseismicity of typical hydraulic fracturing and injection operations is relatively similar in the majority of basins under investigation and the overall associating seismic energy is not strong enough to be the important factor to jeopardize near surface groundwater resources. Furthermore, these events are less energetic compared to the moderately active tectonic zones through the world and usually do not extend over a long period at considerably deep parts. However, the huge volume of the treatment fluids and improper casing cementing operation seem to be primary sources for contaminating near surface water resources.