Loess soils are characterized by metastable microstructure, high porosity and water-sensitivity. These soils have always been problematic soils and attracted attention from researchers all over the world. In the prese...Loess soils are characterized by metastable microstructure, high porosity and water-sensitivity. These soils have always been problematic soils and attracted attention from researchers all over the world. In the present study, three loess soils extracted at various depths from the Loess Plateau of China, i.e. Malan(Q_3), upper Lishi(Q_2~2) and lower Lishi(Q_2~1) loess soils, were studied. Single oedometer-collapse tests were performed on intact loess specimens to investigate the collapse behavior of three loess soils. The microstructure and chemical composition of each loess before and after collapse test were characterized using scanning electron microscopy(i.e. SEM) and energy dispersive spectroscopy(i.e. EDS) techniques. The microstructural evolution due to wetting collapse was interpreted qualitatively and quantitatively in terms of the pore morphology properties. The results suggest that:(1) the collapse potential of each loess may rise again after a round of rise and drop, which could be failure of the new-developed stable structure under quite high vertical pressure. It implies that loess may collapse even if it has collapsed.(2) Q_3, Q_2~2 and Q_2~1 loess have different types of microstructure, namely, granule, aggregate and matrix type of microstructure, respectively.(3) The microstructural evolution due to loading and wetting is observed from a granule type to an aggregate type and finally to a matrix type of structure. The variations in distributions of pore morphology properties indicate that collapse leads to a transformation of large-sized pores into small-sized pores, re-orientation and remolding of soil pores due to particle rearrangement.(4) A porous structure is essential for loess collapse; however, the non-water-stability of bonding agents promotes the occurrence of collapse under the coupling effect of loading and wetting.展开更多
Super-resolution structured illumination microscopy(SR-SIM)is an outstanding method for visualizing the subcellular dynamics in living cells.To date,by using elaborately designed systems and algorithms,SR-SIM can achi...Super-resolution structured illumination microscopy(SR-SIM)is an outstanding method for visualizing the subcellular dynamics in living cells.To date,by using elaborately designed systems and algorithms,SR-SIM can achieve rapid,optically sectioned,SR observation with hundreds to thousands of time points.However,real-time observation is still out of reach for most SIM setups as conventional algorithms for image reconstruction involve a heavy computing burden.To address this limitation,an accelerated reconstruction algorithm was developed by implementing a simplified workflow for SR-SIM,termed joint space and frequency reconstruction.This algorithm results in an 80-fold improvement in reconstruction speed relative to the widely used Wiener-SIM.Critically,the increased processing speed does not come at the expense of spatial resolution or sectioning capability,as demonstrated by live imaging of microtubule dynamics and mitochondrial tubulation.展开更多
In the French concept of deep nuclear waste repositories,the galleries should be backfilled with excavated argillite after the site has been filled.Some additives like lime could be used to improve the mechanical char...In the French concept of deep nuclear waste repositories,the galleries should be backfilled with excavated argillite after the site has been filled.Some additives like lime could be used to improve the mechanical characteristics of the argillite.After thousands of years,the degradation of the concrete lining of the galleries will generate an alkaline solution(pH value 12) that will diffuse through the backfill.This study presents the effect of a saturated Ca(OH)_2 solution circulation through lime-treated sample at 60 ℃ for 3,6 and 12 months,respectively.The effect of such circulation on the lime-treated Manois argillite(MA) was assessed by petrographical examination coupled to image analysis and scanning electron microscopy(SEM) equipped with energy dispersive X-ray(EDX) analyser of soil pieces.The objective of this study is to make the link among the mineralogical transformations,the textural and mechanical changes produced in the compacted clayey soil as a consequence of the alkaline solution circulation.展开更多
Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona...Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.展开更多
Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many u...Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many underground mines,RCMD includes three primary components which can be loosely associated with three major dust sources:coal dust from the coal seam itself,silicates from the surrounding rock strata,and carbonates from the inert‘rock dust’products that are applied to mitigate explosion hazards.A monitor which can reliably partition RCMD between these three components could thus allow source apportionment.And tracking silicates,specifically,could be valuable since the most serious health risks are typically associated with this component-particularly if abundant in crystalline silica.Envisioning a monitoring concept based on field microscopy,and following up on prior research using polarized light,the aim of the current study was to build and test a model to classify respirable-sized particles as either coal,silicates,or carbonates.For model development,composite dust samples were generated in the laboratory by successively depositing dust from high-purity materials onto a sticky transparent substrate,and imaging after each deposition event such that the identity of each particle was known a priori.Model testing followed a similar approach,except that real geologic materials were used as the source for each dust component.Results showed that the model had an overall accuracy of 86.5%,indicating that a field-microscopy based moni-tor could support RCMD source apportionment and silicates tracking in some coal mines.展开更多
基金the National Key Research and Development Program of China (2017YFD0800501)the National Natural Science Foundation of China (Grant No. 41772323)+2 种基金the Shaanxi Science and Technology Bureau (Grant No.2016KW-030)the Geological Survey Bureau of China (DD20189270)the Key Laboratory for Geohazard in Loess Area, Ministry of Land and Resources (Grant No. KLGLAMLR201502)
文摘Loess soils are characterized by metastable microstructure, high porosity and water-sensitivity. These soils have always been problematic soils and attracted attention from researchers all over the world. In the present study, three loess soils extracted at various depths from the Loess Plateau of China, i.e. Malan(Q_3), upper Lishi(Q_2~2) and lower Lishi(Q_2~1) loess soils, were studied. Single oedometer-collapse tests were performed on intact loess specimens to investigate the collapse behavior of three loess soils. The microstructure and chemical composition of each loess before and after collapse test were characterized using scanning electron microscopy(i.e. SEM) and energy dispersive spectroscopy(i.e. EDS) techniques. The microstructural evolution due to wetting collapse was interpreted qualitatively and quantitatively in terms of the pore morphology properties. The results suggest that:(1) the collapse potential of each loess may rise again after a round of rise and drop, which could be failure of the new-developed stable structure under quite high vertical pressure. It implies that loess may collapse even if it has collapsed.(2) Q_3, Q_2~2 and Q_2~1 loess have different types of microstructure, namely, granule, aggregate and matrix type of microstructure, respectively.(3) The microstructural evolution due to loading and wetting is observed from a granule type to an aggregate type and finally to a matrix type of structure. The variations in distributions of pore morphology properties indicate that collapse leads to a transformation of large-sized pores into small-sized pores, re-orientation and remolding of soil pores due to particle rearrangement.(4) A porous structure is essential for loess collapse; however, the non-water-stability of bonding agents promotes the occurrence of collapse under the coupling effect of loading and wetting.
基金supported by the National Natural Science Foundation of China (NSFC) (Nos. 62005208, 62135003, and 61905189)Innovation Capability Support Program of Shaanxi (No. 2021TD-57)+1 种基金China Postdoctoral Science Foundation (Nos. 2020M673365 and 2019M663656)National Institutes of Health Grant GM100156 to PRB
文摘Super-resolution structured illumination microscopy(SR-SIM)is an outstanding method for visualizing the subcellular dynamics in living cells.To date,by using elaborately designed systems and algorithms,SR-SIM can achieve rapid,optically sectioned,SR observation with hundreds to thousands of time points.However,real-time observation is still out of reach for most SIM setups as conventional algorithms for image reconstruction involve a heavy computing burden.To address this limitation,an accelerated reconstruction algorithm was developed by implementing a simplified workflow for SR-SIM,termed joint space and frequency reconstruction.This algorithm results in an 80-fold improvement in reconstruction speed relative to the widely used Wiener-SIM.Critically,the increased processing speed does not come at the expense of spatial resolution or sectioning capability,as demonstrated by live imaging of microtubule dynamics and mitochondrial tubulation.
文摘In the French concept of deep nuclear waste repositories,the galleries should be backfilled with excavated argillite after the site has been filled.Some additives like lime could be used to improve the mechanical characteristics of the argillite.After thousands of years,the degradation of the concrete lining of the galleries will generate an alkaline solution(pH value 12) that will diffuse through the backfill.This study presents the effect of a saturated Ca(OH)_2 solution circulation through lime-treated sample at 60 ℃ for 3,6 and 12 months,respectively.The effect of such circulation on the lime-treated Manois argillite(MA) was assessed by petrographical examination coupled to image analysis and scanning electron microscopy(SEM) equipped with energy dispersive X-ray(EDX) analyser of soil pieces.The objective of this study is to make the link among the mineralogical transformations,the textural and mechanical changes produced in the compacted clayey soil as a consequence of the alkaline solution circulation.
基金funded by the National Natural Science Foundation of China(62125504,61827825,and 31901059)Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.
基金supported by the Alpha Foundation for the Improvement of Mine Safety and Health,grant number AFC316FO-84.
文摘Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many underground mines,RCMD includes three primary components which can be loosely associated with three major dust sources:coal dust from the coal seam itself,silicates from the surrounding rock strata,and carbonates from the inert‘rock dust’products that are applied to mitigate explosion hazards.A monitor which can reliably partition RCMD between these three components could thus allow source apportionment.And tracking silicates,specifically,could be valuable since the most serious health risks are typically associated with this component-particularly if abundant in crystalline silica.Envisioning a monitoring concept based on field microscopy,and following up on prior research using polarized light,the aim of the current study was to build and test a model to classify respirable-sized particles as either coal,silicates,or carbonates.For model development,composite dust samples were generated in the laboratory by successively depositing dust from high-purity materials onto a sticky transparent substrate,and imaging after each deposition event such that the identity of each particle was known a priori.Model testing followed a similar approach,except that real geologic materials were used as the source for each dust component.Results showed that the model had an overall accuracy of 86.5%,indicating that a field-microscopy based moni-tor could support RCMD source apportionment and silicates tracking in some coal mines.