We review the recent biomedical detection developments of scanning near-field optical microscopy(SNOM),focusing on scattering-type SNOM,atomic force microscope-based infrared spectroscopy,peak force infrared microscop...We review the recent biomedical detection developments of scanning near-field optical microscopy(SNOM),focusing on scattering-type SNOM,atomic force microscope-based infrared spectroscopy,peak force infrared microscopy,and photo-induced force microscopy,which have the advantages of label-free,noninvasive,and specific spectral recognition.Considering the high water content of biological samples and the strong absorption of water by infrared waves,we divide the relevant research on these techniques into two categories:one based on a nonliquid environment and the other based on a liquid environment.In the nonliquid environment,the chemical composition and structural information of biomedical samples can be obtained with nanometer resolution.In the liquid environment,these techniques can be used to monitor the dynamic chemical reaction process and track the process of chemical composition and structural change of single molecules,which is conducive to exploring the development mechanism of physiological processes.We elaborate their experimental challenges,technical means,and actual cases for three microbiomedical samples(including biomacromolecules,cells,and tissues).We also discuss the prospects and challenges for their development.Our work lays a foundation for the rational design and efficient use of near-field optical microscopy to explore the characteristics of microscopic biology.展开更多
Nano-infrared(nanoIR)probes play a crucial role as nano-mechanical sensors and antennas for light absorption and emission,and their testing performance is critically dependent on their optical properties and structura...Nano-infrared(nanoIR)probes play a crucial role as nano-mechanical sensors and antennas for light absorption and emission,and their testing performance is critically dependent on their optical properties and structural stability.Graphene-coated dielectric probes are highly attractive for enhancing light–matter interactions and integrating IR photonics,providing a broadband optical response and strong electromagnetic field.However,achieving continuous single-layer graphene growth on non-planar and non-single crystalline dielectrics is a significant challenge due to the low surface energy of the dielectric and the large difference in size between the probe tip,cantilever,and substrate.Herein,we present a novel method for the growth of high-quality and continuous graphene with good conductivity on non-planar and amorphous dielectric probe surfaces using manganese oxide powder-assisted short time heating chemical vapor deposition.The resulting graphene-coated dielectric probes exhibit an average IR reflectance of only 5%in the mid-IR band,significantly outperforming probes without continuous graphene coating.Such probes can not only effectively transduce the local photothermal sample expansion caused by the absorption of IR laser pulses,but also effectively scatter near-field light,which is 25 times stronger than the commercial metal-coated probes,and have advantages in the application of nanoIR sensing based on atomic force microscope-based infrared(AFM-IR)spectroscopy and infrared scattering scanning near field optical microscopy(IR s-SNOM)principles.Furthermore,our graphene growth method provides a solution for growing high-quality graphene on the surfaces of non-planar dielectric materials required for integrated circuits and other fields.展开更多
基金supported by the National Key Research and Development Program(Grant No.2022YFA1404004)the Key Domestic Scientific and Technological Cooperation Projects in Shanghai(Grant No.21015800200).
文摘We review the recent biomedical detection developments of scanning near-field optical microscopy(SNOM),focusing on scattering-type SNOM,atomic force microscope-based infrared spectroscopy,peak force infrared microscopy,and photo-induced force microscopy,which have the advantages of label-free,noninvasive,and specific spectral recognition.Considering the high water content of biological samples and the strong absorption of water by infrared waves,we divide the relevant research on these techniques into two categories:one based on a nonliquid environment and the other based on a liquid environment.In the nonliquid environment,the chemical composition and structural information of biomedical samples can be obtained with nanometer resolution.In the liquid environment,these techniques can be used to monitor the dynamic chemical reaction process and track the process of chemical composition and structural change of single molecules,which is conducive to exploring the development mechanism of physiological processes.We elaborate their experimental challenges,technical means,and actual cases for three microbiomedical samples(including biomacromolecules,cells,and tissues).We also discuss the prospects and challenges for their development.Our work lays a foundation for the rational design and efficient use of near-field optical microscopy to explore the characteristics of microscopic biology.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.22002127,22275155,22272140,22202162,and 21904112)the Natural Science Foundation of Xiamen,China(No.3502Z20227008)+3 种基金the Fundamental Research Funds for the Central Universities(No.20720210016)the Ministry of Science and Technology of China,National Key Research and Development Program of China(No.2021YFA1201502)the Fundamental Research Funds for the Central Universities(No.20720220011)China Postdoctoral Science Foundation(No.2022M722648).
文摘Nano-infrared(nanoIR)probes play a crucial role as nano-mechanical sensors and antennas for light absorption and emission,and their testing performance is critically dependent on their optical properties and structural stability.Graphene-coated dielectric probes are highly attractive for enhancing light–matter interactions and integrating IR photonics,providing a broadband optical response and strong electromagnetic field.However,achieving continuous single-layer graphene growth on non-planar and non-single crystalline dielectrics is a significant challenge due to the low surface energy of the dielectric and the large difference in size between the probe tip,cantilever,and substrate.Herein,we present a novel method for the growth of high-quality and continuous graphene with good conductivity on non-planar and amorphous dielectric probe surfaces using manganese oxide powder-assisted short time heating chemical vapor deposition.The resulting graphene-coated dielectric probes exhibit an average IR reflectance of only 5%in the mid-IR band,significantly outperforming probes without continuous graphene coating.Such probes can not only effectively transduce the local photothermal sample expansion caused by the absorption of IR laser pulses,but also effectively scatter near-field light,which is 25 times stronger than the commercial metal-coated probes,and have advantages in the application of nanoIR sensing based on atomic force microscope-based infrared(AFM-IR)spectroscopy and infrared scattering scanning near field optical microscopy(IR s-SNOM)principles.Furthermore,our graphene growth method provides a solution for growing high-quality graphene on the surfaces of non-planar dielectric materials required for integrated circuits and other fields.