CPU and System-on-Chip (SoC) are two key technologies of IT industry. During the course of ten years of research, we have defined the UniCore instruction set architecture, and designed the UniCore CPU and the PKUnit...CPU and System-on-Chip (SoC) are two key technologies of IT industry. During the course of ten years of research, we have defined the UniCore instruction set architecture, and designed the UniCore CPU and the PKUnity SoC family. This cross-disciplinary practice has also fostered many innovations in microprocessor architecture, optimizing compilers, low power design, functional verification, physical design, and so on. In the mean time, we have put technology transfer on the list of our top priorities. This effort has led to several marketable products, such as ultra mobile personal computers, secure micro-workstations and 3C-converged consumer electronics. The development of the next generation products, the 64-bit multi-core CPU and SoC, is also underway. They will find their applications in secure and adaptable computers for mobile and desktop, as well as personal digital multimedia devices. Being consistent with the philosophy and the long-term plan, and by leveraging the cutting-edge process technology, we will continue to make more innovations in CPUs and SoCs, and strengthen our commitment to technology transfer.展开更多
In the era of Internet of Things, the battery life of edge devices must be extended for sensing connection to the Internet. We aim to reduce the power consumption of the microprocessor embedded in such devices by usin...In the era of Internet of Things, the battery life of edge devices must be extended for sensing connection to the Internet. We aim to reduce the power consumption of the microprocessor embedded in such devices by using a novel dynamically reconfigurable accelerator. Conventional microprocessors consume a large amount of power for memory access, in registers, and for the control of the processor itself rather than computation;this decreases the energy efficiency. Dynamically reconfigurable accelerators reduce such redundant power by computing in parallel on reconfigurable switches and processing element arrays (often consisting of an arithmetic logic unit (ALU) and registers). We propose a novel dynamically reconfigurable accelerator “DYNaSTA” composed of a dynamically reconfigurable data path and static ALU arrays. The static ALU arrays process instructions in parallel without registers and improve energy efficiency. The dynamically reconfigurable data path includes registers and many switches dynamically reconfigured to resolve operand dependencies between instructions mapped on the static ALU array, and forwards appropriate operands to the static ALU array. Therefore, the DYNaSTA accelerator has more flexibility while improving the energy efficiency compared with the conventional dynamically reconfigurable accelerators. We simulated the power consumption of the proposed DYNaSTA accelerator and measured the fabricated chip. As a result, the power consumption was reduced by 69% to 86%, and the energy efficiency improved 4.5 to 13 times compared to a general RISC microprocessor.展开更多
基金Supported by the National High Technology Research and Development 863 Program of China under Grant Nos.2002AA1Z1010 2003AA1Z1010,2004AA1Z1010 and 2006AA010202.
文摘CPU and System-on-Chip (SoC) are two key technologies of IT industry. During the course of ten years of research, we have defined the UniCore instruction set architecture, and designed the UniCore CPU and the PKUnity SoC family. This cross-disciplinary practice has also fostered many innovations in microprocessor architecture, optimizing compilers, low power design, functional verification, physical design, and so on. In the mean time, we have put technology transfer on the list of our top priorities. This effort has led to several marketable products, such as ultra mobile personal computers, secure micro-workstations and 3C-converged consumer electronics. The development of the next generation products, the 64-bit multi-core CPU and SoC, is also underway. They will find their applications in secure and adaptable computers for mobile and desktop, as well as personal digital multimedia devices. Being consistent with the philosophy and the long-term plan, and by leveraging the cutting-edge process technology, we will continue to make more innovations in CPUs and SoCs, and strengthen our commitment to technology transfer.
文摘In the era of Internet of Things, the battery life of edge devices must be extended for sensing connection to the Internet. We aim to reduce the power consumption of the microprocessor embedded in such devices by using a novel dynamically reconfigurable accelerator. Conventional microprocessors consume a large amount of power for memory access, in registers, and for the control of the processor itself rather than computation;this decreases the energy efficiency. Dynamically reconfigurable accelerators reduce such redundant power by computing in parallel on reconfigurable switches and processing element arrays (often consisting of an arithmetic logic unit (ALU) and registers). We propose a novel dynamically reconfigurable accelerator “DYNaSTA” composed of a dynamically reconfigurable data path and static ALU arrays. The static ALU arrays process instructions in parallel without registers and improve energy efficiency. The dynamically reconfigurable data path includes registers and many switches dynamically reconfigured to resolve operand dependencies between instructions mapped on the static ALU array, and forwards appropriate operands to the static ALU array. Therefore, the DYNaSTA accelerator has more flexibility while improving the energy efficiency compared with the conventional dynamically reconfigurable accelerators. We simulated the power consumption of the proposed DYNaSTA accelerator and measured the fabricated chip. As a result, the power consumption was reduced by 69% to 86%, and the energy efficiency improved 4.5 to 13 times compared to a general RISC microprocessor.