This paper reviews recent development and achievements in controllable preparation of nanoparticles, micron spherical and non-spherical particles, using microfluidics. A variety of synthesis strategies are presented a...This paper reviews recent development and achievements in controllable preparation of nanoparticles, micron spherical and non-spherical particles, using microfluidics. A variety of synthesis strategies are presented and compared, including single-phase and multiphase microflows. The main structures of microfluidic devices and the fundamental principles of microflows for particle preparation are summarized and identified. The controllability of particle size, size distribution, crystal structure, morphology, physical and chemical properties, is examined in terms of the special features of microfluidic reactors. An outlook on opinions and predictions concerning the future development of powder technology with microfluidics is specially provided.展开更多
Background The safety and efficiency of transurethral laser resection of the prostate to treat benign prostatic hyperplasia have been verified. However, this method does still not manage large volume prostates efficie...Background The safety and efficiency of transurethral laser resection of the prostate to treat benign prostatic hyperplasia have been verified. However, this method does still not manage large volume prostates efficiently. To tackle this problem, we have designed a method of "transurethral dividing vaporesection of prostate" using a 2 micron continuous wave laser. The aim of this study was to evaluate the safety and efficiency of this method in the management of large prostates (〉80 ml).Methods In this study, 45 cases of benign prostatic hyperplasia with a median prostatic volume of (123.7±26.7) ml (range, 80.2-159.8 ml) were treated by the same surgeon under epidural anesthesia. During the surgery, superapubic catheters were needed, and saline solution was used for irrigation. First, the prostate was divided longitudinally into several parts from the bladder neck to the prostatic apex, and then gradually incised transversely chip by chip. Intraoperative blood transfusion rate, postoperative complications, maximum urinary flow rate, International Prostate Symptom Score and quality of life scores were recorded for statistical analysis using SPSS 16.0 software.Results Intraoperatively, no transurethral resection syndrome was observed, and no blood transfusions were needed.The resected prostatic chips were easily flushed out of the bladder through the resectoscope sheath without the use of a morcellator. Median vaporesection time was (95.0±13.2) minutes (range, 75-120 minutes), and the median retrieved and removed prostatic tissue were (25.2±5.1) g (range, 15.5-34.7 g) and (75.4±16.4) g (range, 43.8-106.1 g), respectively. Median catheter time and hospital stay were (3.3±0.9) days (range, 3-5 days) and (4.8±1.8) days (range, 3-9 days), respectively. After a follow-up of 6 to 12 months, two patients had stress urinary incontinence and three had anterior urethral strictures. Satisfactory improvement was seen in maximum urinary flow rate, International Pro展开更多
The feasibility of the rapid degradation of hexachlorobenzene (HCB) by micron-size silver (Ag)/iron (Fe) particles was investigated.Ag/Fe particles with different ratios (0,0.05%,0.09%,0.20%,and 0.45%) were pr...The feasibility of the rapid degradation of hexachlorobenzene (HCB) by micron-size silver (Ag)/iron (Fe) particles was investigated.Ag/Fe particles with different ratios (0,0.05%,0.09%,0.20%,and 0.45%) were prepared by electroless silver plating on 300 mesh Fe powder,and were used to degrade HCB at different pH values and temperatures.The dechlorination ability of Fe greatly increased with small Ag addition,whereas too much added Ag would cover the Fe surface and reduce the effective reaction surface,thereby decreasing the extent of dechlorination.The optimal Ag/Fe ratio was 0.09%.Tafel polarization curves showed that HCB was rapidly degraded at neutral or acidic pH,whereas low pH levels severely intensified H2 production,which consumed the reducing electrons needed for the HCB degradation.HCB degradation was more sensitive to temperature than pH.The rate constant of HCB dechlorination was 0.452 min-1 at 85℃,50 times higher than that at 31℃.HCB was degraded in a successive dechlorination pathway,yielding the main products 1,2,4,5-tetrachlorobenzene and 1,2,4-trichlorobenzene within 2 hr.展开更多
The booming development of DIW technology present an unprecedented prospect in energetic materials field and has attracted great interest due to its relative simplicity and high flexibility of manufacturing.Herein,a n...The booming development of DIW technology present an unprecedented prospect in energetic materials field and has attracted great interest due to its relative simplicity and high flexibility of manufacturing.Herein,a novel CL-20 based explosive ink formulation have been developed successfully for MEMS initiation systems via DIW technology.We designed PVA/GAP into an oil-in-water(O/W)emulsion,in the way that the aqueous solution of PVA as water phase,the ethyl acetate solution of GAP as oil phase,the combination of Tween 80 and SDS as emulsifier,BPS as a curing agent of GAP.The ideal formulation with good shear-thinning rheology properties and clear gel point was prepared using only 10 wt%emulsion.The dual-cured network formed during the curing process made the printed sample have good mechanical properties.The printed samples had satisfactory molding effect without cracks or fractures,the crystal form of CL-20 not changed and the thermal stability have improved.Deposition of explosive inks via DIW in micro-scale grooves had excellent detonation performances,which critical detonation size was 1×0.045 mm,detonation velocity was 7129 m/s and when the corner reaching 150°can still detonated stably.This study may open new avenues for developing binder systems in explosive ink formulations.展开更多
The degradation of mechanical properties of overdischarge battery materials manifests as a significant effect on the energy density,safety,and cycle life of the batteries.However,establishing the correlation between d...The degradation of mechanical properties of overdischarge battery materials manifests as a significant effect on the energy density,safety,and cycle life of the batteries.However,establishing the correlation between depth of overdischarge and mechanical properties is still a significant challenge.Studying the correlation between depth of overdischarge and mechanical properties is of great significance to improving the energy density and the ability to resist abuse of the batteries.In this paper,the mechanical properties of the battery materials during the whole process of overdischarge from discharge to complete failure were studied.The effects of depth of overdischarge on the elastic modulus and hardness of the cathode of the battery,the tensile strength and the thermal shrinkage rate of the separator,and the performance of binder were investigated.The precipitation of Cu dendrites on the separator and cathode after dissolution of anode copper foil is a key factor affecting the performance of battery materials.The Cu dendrites attached to the cathode penetrate the separator,causing irreversible damage to the coating and base film of the separator,which leads to a sharp decline in the tensile strength,thermal shrinkage rate and other properties of the separator.In addition,the Cu dendrites wrapping the cathode active particles reduce the adhesion of the active particles binder.Meanwhile,the active particles are damaged,resulting in a significant decrease in the elastic modulus and hardness of the cathode.展开更多
The investigation of the melting behaviors of the molten salt at micron scale during the melting process is critical for explaining the solid-liquid phase transition mechanism.In this paper,a novel experimental system...The investigation of the melting behaviors of the molten salt at micron scale during the melting process is critical for explaining the solid-liquid phase transition mechanism.In this paper,a novel experimental system and analysis method were proposed to study the melting process with three heating rates in the range of1-10℃/min of the solar salt at micron scale.The solid-liquid boundary morphology and phase transition kinetics of molten salt particles were focused on.Meanwhile,the correlations between liquid fraction,temperature and time under different heating rates were studied.The solid-liquid boundary morphology was depicted by the visualized experimental set-up,and the instantaneous liquid volume fraction during the non-isothermal phase transition was obtained.Then,the correlation between temperature and liquid volume fraction was proposed to reveal the evolution of the solid-liquid boundary with temperature at different heating rates.Furthermore,the non-isothermal phase transition kinetic equation was established by introducing a constant parameter(V_(a,b)),and more kinetic parameters such as 1g V_(a,b) and-lg V_(a,b)/b were studied.The results showed that the exponent b is not sensitive to the heating rate with a range of 3-5 for solar salt particles.However,the heating rate influences the value of V_(a,b) and presents a positive relationship.Besides,the non-isothermal phase transition kinetic equations at different heating rates in the range of 1-10℃/min can be quickly predicted by the proposed improved experimental test method.This study could fill the research insufficiency and provide significant guidance for future research on the solid-liquid transition mechanism of molten salts at micron scale.展开更多
Single crystallization is an important strategy to resolve intergranular cracks and unnecessary side reactions with electrolytes in layered transition metal oxide cathodes LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811).Due t...Single crystallization is an important strategy to resolve intergranular cracks and unnecessary side reactions with electrolytes in layered transition metal oxide cathodes LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811).Due to the limitations of high-temperature sintering and multi-step calcination,single crystal NMC811 generally shows irregular particles with a size of 2-3μm.However,the prolonged Li-ion diffusion pathway and the stress generated by the uneven de-/intercalation sluggish Li-ion diffusion kinetics,what is more,cause structural damage such as intragranular cracks.A slow Li extraction rate or particle size reduction will ameliorate the structural damage and improve the cycling stability.As the most promising cathodes for next-generation power batteries,NMC811 required fast charge performance and cycle stability.Particle size reduction appears to be the displacement option.Nanonization is an effective strategy to mitigate intragranular cracks of single crystal NMC811.However,the serious aggregation and increased specific surface area become new challenges.In this article,we synthesized monodisperse nanoscale single crystal NMC811 by molten salt method and modified the surface by LiNbO3 coating.The electrochemical performance shows that nanoscale single crystal NMC811 has faster kinetic and higher capacity retention,so the strategy of combining nanonization and surface coating is an alternative way to prepare high specific capacity and cycle stable single crystal NMC811.展开更多
基金the National Natural Science Foundation of China (21036002, 20876084, and 20976096)the National Basic Research Program of China (2007CB714302)
文摘This paper reviews recent development and achievements in controllable preparation of nanoparticles, micron spherical and non-spherical particles, using microfluidics. A variety of synthesis strategies are presented and compared, including single-phase and multiphase microflows. The main structures of microfluidic devices and the fundamental principles of microflows for particle preparation are summarized and identified. The controllability of particle size, size distribution, crystal structure, morphology, physical and chemical properties, is examined in terms of the special features of microfluidic reactors. An outlook on opinions and predictions concerning the future development of powder technology with microfluidics is specially provided.
文摘Background The safety and efficiency of transurethral laser resection of the prostate to treat benign prostatic hyperplasia have been verified. However, this method does still not manage large volume prostates efficiently. To tackle this problem, we have designed a method of "transurethral dividing vaporesection of prostate" using a 2 micron continuous wave laser. The aim of this study was to evaluate the safety and efficiency of this method in the management of large prostates (〉80 ml).Methods In this study, 45 cases of benign prostatic hyperplasia with a median prostatic volume of (123.7±26.7) ml (range, 80.2-159.8 ml) were treated by the same surgeon under epidural anesthesia. During the surgery, superapubic catheters were needed, and saline solution was used for irrigation. First, the prostate was divided longitudinally into several parts from the bladder neck to the prostatic apex, and then gradually incised transversely chip by chip. Intraoperative blood transfusion rate, postoperative complications, maximum urinary flow rate, International Prostate Symptom Score and quality of life scores were recorded for statistical analysis using SPSS 16.0 software.Results Intraoperatively, no transurethral resection syndrome was observed, and no blood transfusions were needed.The resected prostatic chips were easily flushed out of the bladder through the resectoscope sheath without the use of a morcellator. Median vaporesection time was (95.0±13.2) minutes (range, 75-120 minutes), and the median retrieved and removed prostatic tissue were (25.2±5.1) g (range, 15.5-34.7 g) and (75.4±16.4) g (range, 43.8-106.1 g), respectively. Median catheter time and hospital stay were (3.3±0.9) days (range, 3-5 days) and (4.8±1.8) days (range, 3-9 days), respectively. After a follow-up of 6 to 12 months, two patients had stress urinary incontinence and three had anterior urethral strictures. Satisfactory improvement was seen in maximum urinary flow rate, International Pro
基金supported by the National High Technology Research and Development Program(863)of China(No.2009AA064001)
文摘The feasibility of the rapid degradation of hexachlorobenzene (HCB) by micron-size silver (Ag)/iron (Fe) particles was investigated.Ag/Fe particles with different ratios (0,0.05%,0.09%,0.20%,and 0.45%) were prepared by electroless silver plating on 300 mesh Fe powder,and were used to degrade HCB at different pH values and temperatures.The dechlorination ability of Fe greatly increased with small Ag addition,whereas too much added Ag would cover the Fe surface and reduce the effective reaction surface,thereby decreasing the extent of dechlorination.The optimal Ag/Fe ratio was 0.09%.Tafel polarization curves showed that HCB was rapidly degraded at neutral or acidic pH,whereas low pH levels severely intensified H2 production,which consumed the reducing electrons needed for the HCB degradation.HCB degradation was more sensitive to temperature than pH.The rate constant of HCB dechlorination was 0.452 min-1 at 85℃,50 times higher than that at 31℃.HCB was degraded in a successive dechlorination pathway,yielding the main products 1,2,4,5-tetrachlorobenzene and 1,2,4-trichlorobenzene within 2 hr.
基金This work was supported by the Graduate Education Innovation Project of Shanxi Province(2020SY401)No.55 Research Institute of China North Industries Group Corporation Open Innovation Fund(WDZC2020JJ017).
文摘The booming development of DIW technology present an unprecedented prospect in energetic materials field and has attracted great interest due to its relative simplicity and high flexibility of manufacturing.Herein,a novel CL-20 based explosive ink formulation have been developed successfully for MEMS initiation systems via DIW technology.We designed PVA/GAP into an oil-in-water(O/W)emulsion,in the way that the aqueous solution of PVA as water phase,the ethyl acetate solution of GAP as oil phase,the combination of Tween 80 and SDS as emulsifier,BPS as a curing agent of GAP.The ideal formulation with good shear-thinning rheology properties and clear gel point was prepared using only 10 wt%emulsion.The dual-cured network formed during the curing process made the printed sample have good mechanical properties.The printed samples had satisfactory molding effect without cracks or fractures,the crystal form of CL-20 not changed and the thermal stability have improved.Deposition of explosive inks via DIW in micro-scale grooves had excellent detonation performances,which critical detonation size was 1×0.045 mm,detonation velocity was 7129 m/s and when the corner reaching 150°can still detonated stably.This study may open new avenues for developing binder systems in explosive ink formulations.
基金supported by the National Natural Science Foundation of China(92266206,52227810)the Jilin Province Science and Technology Development Plan(YDZJ202101ZYTS129)the Fundamental Research Funds for the Central Universities(2022-JCXK-11)。
文摘The degradation of mechanical properties of overdischarge battery materials manifests as a significant effect on the energy density,safety,and cycle life of the batteries.However,establishing the correlation between depth of overdischarge and mechanical properties is still a significant challenge.Studying the correlation between depth of overdischarge and mechanical properties is of great significance to improving the energy density and the ability to resist abuse of the batteries.In this paper,the mechanical properties of the battery materials during the whole process of overdischarge from discharge to complete failure were studied.The effects of depth of overdischarge on the elastic modulus and hardness of the cathode of the battery,the tensile strength and the thermal shrinkage rate of the separator,and the performance of binder were investigated.The precipitation of Cu dendrites on the separator and cathode after dissolution of anode copper foil is a key factor affecting the performance of battery materials.The Cu dendrites attached to the cathode penetrate the separator,causing irreversible damage to the coating and base film of the separator,which leads to a sharp decline in the tensile strength,thermal shrinkage rate and other properties of the separator.In addition,the Cu dendrites wrapping the cathode active particles reduce the adhesion of the active particles binder.Meanwhile,the active particles are damaged,resulting in a significant decrease in the elastic modulus and hardness of the cathode.
基金supported by the National Natural Science Foundation of China (No.51821004 and No. 51876061)。
文摘The investigation of the melting behaviors of the molten salt at micron scale during the melting process is critical for explaining the solid-liquid phase transition mechanism.In this paper,a novel experimental system and analysis method were proposed to study the melting process with three heating rates in the range of1-10℃/min of the solar salt at micron scale.The solid-liquid boundary morphology and phase transition kinetics of molten salt particles were focused on.Meanwhile,the correlations between liquid fraction,temperature and time under different heating rates were studied.The solid-liquid boundary morphology was depicted by the visualized experimental set-up,and the instantaneous liquid volume fraction during the non-isothermal phase transition was obtained.Then,the correlation between temperature and liquid volume fraction was proposed to reveal the evolution of the solid-liquid boundary with temperature at different heating rates.Furthermore,the non-isothermal phase transition kinetic equation was established by introducing a constant parameter(V_(a,b)),and more kinetic parameters such as 1g V_(a,b) and-lg V_(a,b)/b were studied.The results showed that the exponent b is not sensitive to the heating rate with a range of 3-5 for solar salt particles.However,the heating rate influences the value of V_(a,b) and presents a positive relationship.Besides,the non-isothermal phase transition kinetic equations at different heating rates in the range of 1-10℃/min can be quickly predicted by the proposed improved experimental test method.This study could fill the research insufficiency and provide significant guidance for future research on the solid-liquid transition mechanism of molten salts at micron scale.
基金financially supported by the National Natural Science Foundation of China(Nos.52022088,51971245,51772262,U20A20336,21935009)Natural Science Foundation of Hebei Province(Nos.F2021203097,B2020203037)China Postdoctoral Science Foundation(No.2021M702756)。
文摘Single crystallization is an important strategy to resolve intergranular cracks and unnecessary side reactions with electrolytes in layered transition metal oxide cathodes LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811).Due to the limitations of high-temperature sintering and multi-step calcination,single crystal NMC811 generally shows irregular particles with a size of 2-3μm.However,the prolonged Li-ion diffusion pathway and the stress generated by the uneven de-/intercalation sluggish Li-ion diffusion kinetics,what is more,cause structural damage such as intragranular cracks.A slow Li extraction rate or particle size reduction will ameliorate the structural damage and improve the cycling stability.As the most promising cathodes for next-generation power batteries,NMC811 required fast charge performance and cycle stability.Particle size reduction appears to be the displacement option.Nanonization is an effective strategy to mitigate intragranular cracks of single crystal NMC811.However,the serious aggregation and increased specific surface area become new challenges.In this article,we synthesized monodisperse nanoscale single crystal NMC811 by molten salt method and modified the surface by LiNbO3 coating.The electrochemical performance shows that nanoscale single crystal NMC811 has faster kinetic and higher capacity retention,so the strategy of combining nanonization and surface coating is an alternative way to prepare high specific capacity and cycle stable single crystal NMC811.