Micro/nanorobots are promising for a wide range of biomedical applications(such as targeted tumor,thrombus,and infection therapies in hard-to-reach body sites)because of their tiny size and high maneuverability throug...Micro/nanorobots are promising for a wide range of biomedical applications(such as targeted tumor,thrombus,and infection therapies in hard-to-reach body sites)because of their tiny size and high maneuverability through the actuation of external fields(e.g.,magnetic field,light,ultrasound,electric field,and/or heat).However,fully synthetic micro/nanorobots as foreign objects are susceptible to phagocytosis and clearance by diverse phagocytes.To address this issue,researchers have attempted to develop various cytomembrane-camouflaged micro/nanorobots by two means:(1)direct coating of micro/nanorobots with cytomembranes derived from living cells and(2)the swallowing of micro/nanorobots by living immunocytes via phagocytosis.The camouflaging with cytomembranes or living immunocytes not only protects micro/nanorobots from phagocytosis,but also endows them with new characteristics or functionalities,such as prolonging propulsion in biofluids,targeting diseased areas,or neutralizing bacterial toxins.In this review,we comprehensively summarize the recent advances and developments of cytomembrane-camouflaged medical micro/nanorobots.We first discuss how cytomembrane coating nanotechnology has been employed to engineer synthetic nanomaterials,and then we review in detail how cytomembrane camouflage tactic can be exploited to functionalize micro/nanorobots.We aim to bridge the gap between cytomembrane-cloaked micro/nanorobots and nanomaterials and to provide design guidance for developing cytomembrane-camouflaged micro/nanorobots.展开更多
"Active" components can be introduced into a passive system to completely change its physical behavior from its typical behavior at thermodynamic equilibrium. To reveal the interaction mechanisms between ind..."Active" components can be introduced into a passive system to completely change its physical behavior from its typical behavior at thermodynamic equilibrium. To reveal the interaction mechanisms between individuals, researchers have designed unique self-propelled particles to mimic the collective behavior of biological systems. This review focuses on recent theoretical and experimental advances in the study of self-propelled particle systems and their individual and collective behaviors. The potential applications of active particles in chemical, biological and environmental sensing and single particle imaging are discussed.展开更多
The biointerface engineering of living cells by creating an abiotic shell has important implications for endowing cells with exogenous properties with improved cellular behavior,which then boosts the development of th...The biointerface engineering of living cells by creating an abiotic shell has important implications for endowing cells with exogenous properties with improved cellular behavior,which then boosts the development of the emerging field of living cell hybrid materials.Herein,we develop a way to perform active nanoencapsulation of single cell,which then endows the encapsulated cells with motion ability that they do not inherently possess.The emerging motion characteristics of the encapsulated cells could be self-regulated in terms of both the motion velocity and orbits by different proliferation modes.Accordingly,by taking advantage of the emergence of differentiated moving abilities,we achieve the self-sorting between mother cells and daughter cells in a proliferated Saccharomyces cerevisiae cell community.Therefore,it is anticipated that our highlighted study could not only serve as a new technique in the field of single-cell biology analysis and sorting such as in studying the aging process in Saccharomyces cerevisiae,but also open up opportunities to manipulate cell functionality by creating biohybrid materials to fill the gap between biological systems and engineering abiotic materials.展开更多
基金Beijing Institute of Technology Teli Young Fellow Program,Grant/Award Number:3320012222218Beijing Institute of Technology Research Fund Program for Young Scholars,Grant/Award Number:1750023022215+3 种基金National Natural Science Foundation of China,Grant/Award Numbers:32101062,32071341Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2019A1515110005,2022A1515012607Fundamental Research Funds for the Central UniversitiesSun Yat-sen University。
文摘Micro/nanorobots are promising for a wide range of biomedical applications(such as targeted tumor,thrombus,and infection therapies in hard-to-reach body sites)because of their tiny size and high maneuverability through the actuation of external fields(e.g.,magnetic field,light,ultrasound,electric field,and/or heat).However,fully synthetic micro/nanorobots as foreign objects are susceptible to phagocytosis and clearance by diverse phagocytes.To address this issue,researchers have attempted to develop various cytomembrane-camouflaged micro/nanorobots by two means:(1)direct coating of micro/nanorobots with cytomembranes derived from living cells and(2)the swallowing of micro/nanorobots by living immunocytes via phagocytosis.The camouflaging with cytomembranes or living immunocytes not only protects micro/nanorobots from phagocytosis,but also endows them with new characteristics or functionalities,such as prolonging propulsion in biofluids,targeting diseased areas,or neutralizing bacterial toxins.In this review,we comprehensively summarize the recent advances and developments of cytomembrane-camouflaged medical micro/nanorobots.We first discuss how cytomembrane coating nanotechnology has been employed to engineer synthetic nanomaterials,and then we review in detail how cytomembrane camouflage tactic can be exploited to functionalize micro/nanorobots.We aim to bridge the gap between cytomembrane-cloaked micro/nanorobots and nanomaterials and to provide design guidance for developing cytomembrane-camouflaged micro/nanorobots.
基金supported by the National Natural Science Foundation of China (21425519)the Tsinghua University Startup Fund
文摘"Active" components can be introduced into a passive system to completely change its physical behavior from its typical behavior at thermodynamic equilibrium. To reveal the interaction mechanisms between individuals, researchers have designed unique self-propelled particles to mimic the collective behavior of biological systems. This review focuses on recent theoretical and experimental advances in the study of self-propelled particle systems and their individual and collective behaviors. The potential applications of active particles in chemical, biological and environmental sensing and single particle imaging are discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos.22171058 and 21871069)the Fundamental Research Funds for the Central Universities (Grant No.HIT.OCEF.2021027)。
文摘The biointerface engineering of living cells by creating an abiotic shell has important implications for endowing cells with exogenous properties with improved cellular behavior,which then boosts the development of the emerging field of living cell hybrid materials.Herein,we develop a way to perform active nanoencapsulation of single cell,which then endows the encapsulated cells with motion ability that they do not inherently possess.The emerging motion characteristics of the encapsulated cells could be self-regulated in terms of both the motion velocity and orbits by different proliferation modes.Accordingly,by taking advantage of the emergence of differentiated moving abilities,we achieve the self-sorting between mother cells and daughter cells in a proliferated Saccharomyces cerevisiae cell community.Therefore,it is anticipated that our highlighted study could not only serve as a new technique in the field of single-cell biology analysis and sorting such as in studying the aging process in Saccharomyces cerevisiae,but also open up opportunities to manipulate cell functionality by creating biohybrid materials to fill the gap between biological systems and engineering abiotic materials.