Inconel718 was machined with the traditional micromilling(TMM)and ultrasonic vibration assisted micromilling(UVAMM)with the different technology parameters,whose surface quality and burrs formation were studied.The re...Inconel718 was machined with the traditional micromilling(TMM)and ultrasonic vibration assisted micromilling(UVAMM)with the different technology parameters,whose surface quality and burrs formation were studied.The results show that TMM often forms pits,bumps and gullies in the size effect range.UVAMM effectively improves the surface quality compared with TMM.The surface defects are significantly reduced with the increase of feed per tooth(fz).When fz exceeds 4 lm,the effect of ultrasonic vibration on the surface quality is no longer obvious.The minimum burr size on the down milling side and the up milling side are 50.23 lm and 36.57 lm,respectively.The feasibility of vibration cutting in improving surface quality and suppressing burr size was verified.UVAMM effectively suppresses the formation of built-up edge,which can significantly improve the micromilling process.The cutting force is obtained through simulation and experiment.They are agreement in the change trend.The finite element simulation can be used to predict the cutting force.Compared with TMM,feeding force(Fx),radial force(Fy)and axial force(Fz)of UVAMM decrease by 7.6%,11.5%and 1.3%,respectively.展开更多
In this paper,a novel,separable two-degrees-of-freedom stage with high-precision motion and resolution is proposed for the application of vibration-assisted micromilling.A separable design was realized on the basis of...In this paper,a novel,separable two-degrees-of-freedom stage with high-precision motion and resolution is proposed for the application of vibration-assisted micromilling.A separable design was realized on the basis of the detachable structure of the platform.Flexible stages with different dimensions and types can be utilized in the devices.A circular-fillet hinge is selected as the flexible unit with a parallel structure to realize output decoupling and reduce the coupling error between the two vibration directions.Analytical modeling is conducted to explore the static and dynamic characteristics of the stage.Results reveal a good agreement with the finite element simulation result.A series of experiments were conducted to assess the static and dynamic performances of the flexible stage,encompassing tests such as amplitude response,motion trajectory,and coupling trajectory.The results of these tests revealed that the designed vibration-assisted system exhibits precise movement capabilities.展开更多
High-speed micromilling (spindle speeds 100 000r/min) can create complex three-dimensional microfeaturesin difficult-to-machine materials. The micromachined sur-face must be of high quatity, to meet functional requi...High-speed micromilling (spindle speeds 100 000r/min) can create complex three-dimensional microfeaturesin difficult-to-machine materials. The micromachined sur-face must be of high quatity, to meet functional require-ments. However, chatter-induced dynamic instabilitydeteriorates the surface quality and can be detrimental totool life. Chatter-free machining can be accomplished byidentifying stable process parameters via stability lobe dia-gram. To generate accurate stability lobe diagram, it isessential to determine the microend mill dynamics. Fre-quency response function is required to determine the tool-tip dynamics obtained by experimental impact analysis.Note that application of impact load at the microend mill tip(typically 100 - 500 μm) is not feasible as it would invari-ably end with tool failure. Consequently, alternative meth-ods need to be developed to identify the microend milldynamics. In the present work, the frequency responsefunction for the microend mill is obtained by finite elementmethod modal analysis. The frequency response functionobtained from modal analysis has been verified from theexperimentally obtained frequency response function. Theexperimental frequency response function was obtained byimpacting the microend mill near the taper portion with animpact hammer and measuring the vibration of the tool-tipwith a laser displacement sensor. The fundamental fre-quency obtained from finite element method modal analysisshows a difference of 6.6% from the experimental funda-mental frequency. Microend mill dynamics obtained fromthe finite element method is used for chatter prediction inhigh-speed micromilling operations. The stability lobe dia-gram predicts the stability boundary accurately at 60 000r/min and 80 000 r/min; however, a slight deviation isobserved at 100 000 r/min.展开更多
Technological progress has led to increased demand for small components with tiny features, which cannot be achieved through conventional machining. Industrial application of processes based on microcutting is limited...Technological progress has led to increased demand for small components with tiny features, which cannot be achieved through conventional machining. Industrial application of processes based on microcutting is limited by some issues concerning the geometrical scale. The process performance is significantly affected by milling machine, tool holder, tool, workpiece material microstructure, workpiece fixtures, and process parameters. At present, an ultimate micromachining assessment procedure is not available. This study aims to propose and conduct an experiment on a testing procedure for micromilling. The set up to be implemented and the output to be considered are defined and described. Three major stages are identified: estimation of the effective bandwidth of the load cell–tool holder system, the milling machine natural frequency measurement, and micromilling test execution. The entire procedure is performed, and its robustness is demonstrated.展开更多
The precise micromanufacturing of complex dies with small structures for sheet-bulk metal forming is a challenge due to the high hardness of the materials to be machined. Experiments have shown that micromilling of th...The precise micromanufacturing of complex dies with small structures for sheet-bulk metal forming is a challenge due to the high hardness of the materials to be machined. Experiments have shown that micromilling of these difficult-to-machine materials is possible despite of their high hardness. Nevertheless, the higher wear of the tools plays a decisive role. When implementing the machining task as five-axis process, it is possible to control the wear distribution by tilting the milling tools. In this paper, a simulation system is presented which determines the loads acting on the cut- ting edge with regard to different criteria, e.g., the machined material or the effective impulse. Based on this knowledge, it is possible to design the milling process to minimize the tool wear and thereby to increase the lifetime of the milling tools. In order to show the applicability of the simulation system, test workpieces were machined and the experimental results are compared to the simulation data.展开更多
基金Agricultural Key Applied Project of China(No.SD2019NJ015)Project for the Innovation Team of Universities and Institutes in Jinan of China(No.2018GXRC005)。
文摘Inconel718 was machined with the traditional micromilling(TMM)and ultrasonic vibration assisted micromilling(UVAMM)with the different technology parameters,whose surface quality and burrs formation were studied.The results show that TMM often forms pits,bumps and gullies in the size effect range.UVAMM effectively improves the surface quality compared with TMM.The surface defects are significantly reduced with the increase of feed per tooth(fz).When fz exceeds 4 lm,the effect of ultrasonic vibration on the surface quality is no longer obvious.The minimum burr size on the down milling side and the up milling side are 50.23 lm and 36.57 lm,respectively.The feasibility of vibration cutting in improving surface quality and suppressing burr size was verified.UVAMM effectively suppresses the formation of built-up edge,which can significantly improve the micromilling process.The cutting force is obtained through simulation and experiment.They are agreement in the change trend.The finite element simulation can be used to predict the cutting force.Compared with TMM,feeding force(Fx),radial force(Fy)and axial force(Fz)of UVAMM decrease by 7.6%,11.5%and 1.3%,respectively.
基金This research was supported by Program of Tianjin Science and Technology(No.21ZXJBGX00020)the National Natural Science Foundation of China(Nos.51875404,52175275).
文摘In this paper,a novel,separable two-degrees-of-freedom stage with high-precision motion and resolution is proposed for the application of vibration-assisted micromilling.A separable design was realized on the basis of the detachable structure of the platform.Flexible stages with different dimensions and types can be utilized in the devices.A circular-fillet hinge is selected as the flexible unit with a parallel structure to realize output decoupling and reduce the coupling error between the two vibration directions.Analytical modeling is conducted to explore the static and dynamic characteristics of the stage.Results reveal a good agreement with the finite element simulation result.A series of experiments were conducted to assess the static and dynamic performances of the flexible stage,encompassing tests such as amplitude response,motion trajectory,and coupling trajectory.The results of these tests revealed that the designed vibration-assisted system exhibits precise movement capabilities.
文摘High-speed micromilling (spindle speeds 100 000r/min) can create complex three-dimensional microfeaturesin difficult-to-machine materials. The micromachined sur-face must be of high quatity, to meet functional require-ments. However, chatter-induced dynamic instabilitydeteriorates the surface quality and can be detrimental totool life. Chatter-free machining can be accomplished byidentifying stable process parameters via stability lobe dia-gram. To generate accurate stability lobe diagram, it isessential to determine the microend mill dynamics. Fre-quency response function is required to determine the tool-tip dynamics obtained by experimental impact analysis.Note that application of impact load at the microend mill tip(typically 100 - 500 μm) is not feasible as it would invari-ably end with tool failure. Consequently, alternative meth-ods need to be developed to identify the microend milldynamics. In the present work, the frequency responsefunction for the microend mill is obtained by finite elementmethod modal analysis. The frequency response functionobtained from modal analysis has been verified from theexperimentally obtained frequency response function. Theexperimental frequency response function was obtained byimpacting the microend mill near the taper portion with animpact hammer and measuring the vibration of the tool-tipwith a laser displacement sensor. The fundamental fre-quency obtained from finite element method modal analysisshows a difference of 6.6% from the experimental funda-mental frequency. Microend mill dynamics obtained fromthe finite element method is used for chatter prediction inhigh-speed micromilling operations. The stability lobe dia-gram predicts the stability boundary accurately at 60 000r/min and 80 000 r/min; however, a slight deviation isobserved at 100 000 r/min.
文摘Technological progress has led to increased demand for small components with tiny features, which cannot be achieved through conventional machining. Industrial application of processes based on microcutting is limited by some issues concerning the geometrical scale. The process performance is significantly affected by milling machine, tool holder, tool, workpiece material microstructure, workpiece fixtures, and process parameters. At present, an ultimate micromachining assessment procedure is not available. This study aims to propose and conduct an experiment on a testing procedure for micromilling. The set up to be implemented and the output to be considered are defined and described. Three major stages are identified: estimation of the effective bandwidth of the load cell–tool holder system, the milling machine natural frequency measurement, and micromilling test execution. The entire procedure is performed, and its robustness is demonstrated.
文摘The precise micromanufacturing of complex dies with small structures for sheet-bulk metal forming is a challenge due to the high hardness of the materials to be machined. Experiments have shown that micromilling of these difficult-to-machine materials is possible despite of their high hardness. Nevertheless, the higher wear of the tools plays a decisive role. When implementing the machining task as five-axis process, it is possible to control the wear distribution by tilting the milling tools. In this paper, a simulation system is presented which determines the loads acting on the cut- ting edge with regard to different criteria, e.g., the machined material or the effective impulse. Based on this knowledge, it is possible to design the milling process to minimize the tool wear and thereby to increase the lifetime of the milling tools. In order to show the applicability of the simulation system, test workpieces were machined and the experimental results are compared to the simulation data.