The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted t...The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eappand combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eappwith increasing overpotential.The most common explanation for this finding refers to coverage changes upon alterations in the temperature or the applied electrode potential.In the present contribution,it is demonstrated that the modulation of surface coverages cannot entirely explain potential-dependent oscillations of Eapp,and rather the impact of entropic contributions of the transition states has been overlooked so far.In the case of a nearly constant surface coverage,these entropic contributions can be extracted by a dedicated combination of Tafel plots and temperature-dependent experiments.展开更多
The hydrogenation of carbon dioxide(CO2)is one of important processes to effectively convert and utilize CO2,which is also regarded as the key step at the industrial methanol synthesis.Water is likely to play an impor...The hydrogenation of carbon dioxide(CO2)is one of important processes to effectively convert and utilize CO2,which is also regarded as the key step at the industrial methanol synthesis.Water is likely to play an important role in this process,but it still remains elusive.To systematically understand its influence,here we computationally compare the reaction mechanisms of CO2 hydrogenation over the stepped Cu(211)surface between in the absence and presence of water based on microkinetic simulations upon density functional theory(DFT)calculations.The effects of water on each hydrogenation step and the whole activity and selectivity are checked and its physical origin is discussed.It is found that the water could kinetically accelerate the hydrogenation on CO2 to COOH,promoting the reverse water gas shift reaction to produce carbon monoxide(CO).It hardly influences the CO2 hydrogenation to methanol kinetically.In addition,the too high initial partial pressure of water will thermodynamically inhibit the CO2 conversion.展开更多
Reverse water gas shift(RWGS)catalysis,a prominent technology for converting CO2 to CO,is emerging to meet the growing demand of global environment.However,the fundamental understanding of the reaction mechanism is hi...Reverse water gas shift(RWGS)catalysis,a prominent technology for converting CO2 to CO,is emerging to meet the growing demand of global environment.However,the fundamental understanding of the reaction mechanism is hindered by the complex nature of the reaction.Herein,microkinetic modeling of RWGS on different metals(i.e.,Co,Ru,Fe,Ni,Cu,Rh,Pd,and Pt)was performed based on the DFT results to provide the mechanistic insights and achieve the catalyst screening.Adsorption energies of the carbon-based species and the oxygen-based species can be correlated to the adsorption energy of carbon and oxygen,respectively.Moreover,oxygen adsorption energy is an excellent descriptor for the barrier of CO2 and CO direct dissociation and the difference in reaction barrier between CO2(or CO)dissociation and hydrogenation.The reaction mechanism varies on various metals.Direct CO2 dissociation is the dominating route on Co,Fe,Ru,Rh,Cu,and Ni,while it competes with the COOH-mediated path on Pt and Pd surface.The eights metals can be divided into two groups based on the degree of rate control analysis for CO production,where CO–O bond cleavage is rate relevant on Pt,Pd,and Cu,and OH–H binding is rate-controlling on Co,Fe,Ru,Ni,and Rh.Both CO-direct dissociation and hydrogen-assisted route to CH4 contribute to the methane formation on Co,Fe,Pt,Pd,Ru,and Rh,despite the significant barrier difference between the two routes.Besides,the specific rate-relevant transition states and intermediates are suggested for methane formation,and thus,the selectivity can be tuned by adjusting the energy.The descriptor(C-and O-formation energy)based microkinetic modeling proposed that the activity trend is Rh~Ni>Pt~Pd>Cu>Co>Ru>Fe,where Fe,Co,Ru,and Ni tends to be oxidized.The predicted activity trend is well consistent with those obtained experimentally.The interpolation concept of adsorption energy was used to identify bimetallic materials for highly active catalysts for RWGS.展开更多
Cr_(2)O_(3) has been recognized as a key oxide component in bifunctional catalysts to produce bridging intermediate,e.g.,methanol,from syngas.By combining density functional theory calculations and microkinetic modeli...Cr_(2)O_(3) has been recognized as a key oxide component in bifunctional catalysts to produce bridging intermediate,e.g.,methanol,from syngas.By combining density functional theory calculations and microkinetic modeling,we computationally studied the surface structures and catalytic activities of bare Cr_(2)O_(3)(001)and(012)surfaces,and two reduced(012)surfaces covered with dissociative hydrogens or oxygen vacancies.The reduction of(001)surface is much more difficult than that of(012)surface.The stepwise or the concerted reaction pathways were explored for the syngas to methanol conversion,and the hydrogenation of CO or CHO is identified as rate-determining step.Microkinetic modeling reveals that(001)surface is inactive for the reaction,and the rates of both reduced(012)surfaces(25−28 s^(-1))are about five times higher than bare(012)surface(4.3 s^(-1))at 673 K.These theoretical results highlight the importance of surface reducibility on the reaction and may provide some implications on the design of individual component in bifunctional catalysis.展开更多
The direct synthesis of hydrogen peroxide(H_(2)O_(2))via a two‐electron oxygen reduction reaction(2e‐ORR)in acidic media has emerged as a green process for the production of this valuable chemical.However,such an ap...The direct synthesis of hydrogen peroxide(H_(2)O_(2))via a two‐electron oxygen reduction reaction(2e‐ORR)in acidic media has emerged as a green process for the production of this valuable chemical.However,such an approach employs expensive noble‐metal‐based electrocatalysts,which severely undermines its feasibility when implemented on an industrial scale.Herein,based on density functional theory computations and microkinetic modeling,we demonstrate that a novel two‐dimensional(2D)material,namely a 1T′‐MoTe_(2)monolayer,can serve as an efficient non‐precious electrocatalyst to facilitate the 2e‐ORR.The 1T′‐MoTe_(2)monolayer is a stable 2D crystal that can be easily produced through exfoliation techniques.The surface‐exposed Te sites of the 1T′‐MoTe_(2)monolayer exhibit a favorable OOH*binding energy of 4.24 eV,resulting in a rather high basal plane activity toward the 2e‐ORR.Importantly,kinetic computations indicate that the 1T'‐MoTe_(2)monolayer preferentially promotes the formation of H_(2)O_(2)over the competing four‐electron ORR step.These desirable characteristics render 1T′‐MoTe_(2)a promising candidate for catalyzing the electrochemical reduction of O_(2)to H_(2)O_(2).展开更多
基金financially supported by the National Natural Science Foundation of China (22275102)the Natural Science Foundation of Tianjin (20JCYBJC01330)+1 种基金Haihe Laboratory of Sustainable Chemical Transformationsthe "Young Talent Support Plan" of Xi’an Jiaotong University
基金funding by the Ministry of Culture and Science of the Federal State of North Rhine-Westphalia (NRW Return Grant)CRC/TRR247:"Heterogeneous Oxidation Catalysis in the Liquid Phase"(388390466-TRR247),the RESOLV Cluster of Excellence,funded by the Deutsche Forschungsgemeinschaft under Germany’s Excellence StrategyEXC 2033-390677874-RESOLV+1 种基金the Center for Nanointegration (CENIDE)supported by COST (European Cooperation in Science and Technology)。
文摘The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eappand combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eappwith increasing overpotential.The most common explanation for this finding refers to coverage changes upon alterations in the temperature or the applied electrode potential.In the present contribution,it is demonstrated that the modulation of surface coverages cannot entirely explain potential-dependent oscillations of Eapp,and rather the impact of entropic contributions of the transition states has been overlooked so far.In the case of a nearly constant surface coverage,these entropic contributions can be extracted by a dedicated combination of Tafel plots and temperature-dependent experiments.
基金supported by the National Key Research and Development Program of China(2018YFA0208600)the National Natural Science Foundation of China(21673072,21333003,91845111)Program of Shanghai Subject Chief Scientist(17XD1401400)
文摘The hydrogenation of carbon dioxide(CO2)is one of important processes to effectively convert and utilize CO2,which is also regarded as the key step at the industrial methanol synthesis.Water is likely to play an important role in this process,but it still remains elusive.To systematically understand its influence,here we computationally compare the reaction mechanisms of CO2 hydrogenation over the stepped Cu(211)surface between in the absence and presence of water based on microkinetic simulations upon density functional theory(DFT)calculations.The effects of water on each hydrogenation step and the whole activity and selectivity are checked and its physical origin is discussed.It is found that the water could kinetically accelerate the hydrogenation on CO2 to COOH,promoting the reverse water gas shift reaction to produce carbon monoxide(CO).It hardly influences the CO2 hydrogenation to methanol kinetically.In addition,the too high initial partial pressure of water will thermodynamically inhibit the CO2 conversion.
基金support from the Centre for Industrial Catalysis Science and Innovation(iCSI),which receives financial support from the NO237922.
文摘Reverse water gas shift(RWGS)catalysis,a prominent technology for converting CO2 to CO,is emerging to meet the growing demand of global environment.However,the fundamental understanding of the reaction mechanism is hindered by the complex nature of the reaction.Herein,microkinetic modeling of RWGS on different metals(i.e.,Co,Ru,Fe,Ni,Cu,Rh,Pd,and Pt)was performed based on the DFT results to provide the mechanistic insights and achieve the catalyst screening.Adsorption energies of the carbon-based species and the oxygen-based species can be correlated to the adsorption energy of carbon and oxygen,respectively.Moreover,oxygen adsorption energy is an excellent descriptor for the barrier of CO2 and CO direct dissociation and the difference in reaction barrier between CO2(or CO)dissociation and hydrogenation.The reaction mechanism varies on various metals.Direct CO2 dissociation is the dominating route on Co,Fe,Ru,Rh,Cu,and Ni,while it competes with the COOH-mediated path on Pt and Pd surface.The eights metals can be divided into two groups based on the degree of rate control analysis for CO production,where CO–O bond cleavage is rate relevant on Pt,Pd,and Cu,and OH–H binding is rate-controlling on Co,Fe,Ru,Ni,and Rh.Both CO-direct dissociation and hydrogen-assisted route to CH4 contribute to the methane formation on Co,Fe,Pt,Pd,Ru,and Rh,despite the significant barrier difference between the two routes.Besides,the specific rate-relevant transition states and intermediates are suggested for methane formation,and thus,the selectivity can be tuned by adjusting the energy.The descriptor(C-and O-formation energy)based microkinetic modeling proposed that the activity trend is Rh~Ni>Pt~Pd>Cu>Co>Ru>Fe,where Fe,Co,Ru,and Ni tends to be oxidized.The predicted activity trend is well consistent with those obtained experimentally.The interpolation concept of adsorption energy was used to identify bimetallic materials for highly active catalysts for RWGS.
基金This work was supported by the National Natural Science Foundation of China(No.92045303)the China Postdoctoral Science Foundation(No.2020M681444).The computational resources from Sinopec Geophysical Research Institute are acknowledged.
文摘Cr_(2)O_(3) has been recognized as a key oxide component in bifunctional catalysts to produce bridging intermediate,e.g.,methanol,from syngas.By combining density functional theory calculations and microkinetic modeling,we computationally studied the surface structures and catalytic activities of bare Cr_(2)O_(3)(001)and(012)surfaces,and two reduced(012)surfaces covered with dissociative hydrogens or oxygen vacancies.The reduction of(001)surface is much more difficult than that of(012)surface.The stepwise or the concerted reaction pathways were explored for the syngas to methanol conversion,and the hydrogenation of CO or CHO is identified as rate-determining step.Microkinetic modeling reveals that(001)surface is inactive for the reaction,and the rates of both reduced(012)surfaces(25−28 s^(-1))are about five times higher than bare(012)surface(4.3 s^(-1))at 673 K.These theoretical results highlight the importance of surface reducibility on the reaction and may provide some implications on the design of individual component in bifunctional catalysis.
文摘The direct synthesis of hydrogen peroxide(H_(2)O_(2))via a two‐electron oxygen reduction reaction(2e‐ORR)in acidic media has emerged as a green process for the production of this valuable chemical.However,such an approach employs expensive noble‐metal‐based electrocatalysts,which severely undermines its feasibility when implemented on an industrial scale.Herein,based on density functional theory computations and microkinetic modeling,we demonstrate that a novel two‐dimensional(2D)material,namely a 1T′‐MoTe_(2)monolayer,can serve as an efficient non‐precious electrocatalyst to facilitate the 2e‐ORR.The 1T′‐MoTe_(2)monolayer is a stable 2D crystal that can be easily produced through exfoliation techniques.The surface‐exposed Te sites of the 1T′‐MoTe_(2)monolayer exhibit a favorable OOH*binding energy of 4.24 eV,resulting in a rather high basal plane activity toward the 2e‐ORR.Importantly,kinetic computations indicate that the 1T'‐MoTe_(2)monolayer preferentially promotes the formation of H_(2)O_(2)over the competing four‐electron ORR step.These desirable characteristics render 1T′‐MoTe_(2)a promising candidate for catalyzing the electrochemical reduction of O_(2)to H_(2)O_(2).