The rotator cuff tear has emerged as a significant global health concern.However,existing therapies fail to fully restore the intricate bone-to-tendon gradients,resulting in compromised biomechanical functionalities o...The rotator cuff tear has emerged as a significant global health concern.However,existing therapies fail to fully restore the intricate bone-to-tendon gradients,resulting in compromised biomechanical functionalities of the reconstructed enthesis tissues.Herein,a tri-layered core–shell microfibrous scaffold with layer-specific growth factors(GFs)release is developed using coaxial electrohydrodynamic(EHD)printing for in situ cell recruitment and differentiation to facilitate gradient enthesis tissue repair.Stromal cell-derived factor-1(SDF-1)is loaded in the shell,while basic fibroblast GF,transforming GF-beta,and bone morphogenetic protein-2 are loaded in the core of the EHD-printed microfibrous scaffolds in a layer-specific manner.Correspondingly,the tri-layered microfibrous scaffolds have a core–shell fiber size of(25.7±5.1)μm,with a pore size sequentially increasing from(81.5±4.6)μm to(173.3±6.9)μm,and to(388.9±6.9μm)for the tenogenic,chondrogenic,and osteogenic instructive layers.A rapid release of embedded GFs is observed within the first 2 d,followed by a faster release of SDF-1 and a slightly slower release of differentiation GFs for approximately four weeks.The coaxial EHD-printed microfibrous scaffolds significantly promote stem cell recruitment and direct their differentiation toward tenocyte,chondrocyte,and osteocyte phenotypes in vitro.When implanted in vivo,the tri-layered core–shell microfibrous scaffolds rapidly restored the biomechanical functions and promoted enthesis tissue regeneration with native-like bone-to-tendon gradients.Our findings suggest that the microfibrous scaffolds with layer-specific GFs release may offer a promising clinical solution for enthesis regeneration.展开更多
A sinter-locked three-dimensional network of microfibrous nickel catalyst has been fabricated based on wet layup papermaking and sintering processes and this novel approach permits the production of -11 W fuel cell po...A sinter-locked three-dimensional network of microfibrous nickel catalyst has been fabricated based on wet layup papermaking and sintering processes and this novel approach permits the production of -11 W fuel cell power H2 via NH3 decomposition with a conversion of 97% at 750 ℃ in a bed of 0.6 cm^3.展开更多
Adsorption dynamics of ethane in two granular fixed beds and structured fixed beds with microfibrous composites was studied.5A zeolite membrane 5A/PSSF(paper-like sintered stainless steel fiber)and microfibrous entrap...Adsorption dynamics of ethane in two granular fixed beds and structured fixed beds with microfibrous composites was studied.5A zeolite membrane 5A/PSSF(paper-like sintered stainless steel fiber)and microfibrous entrapped activated carbon(MEAC)composites were prepared by wet layup papermaking/sintering technique and in-situ hydrothermal method.Microfibrous composites were characterized by X-ray diffraction,scanning electron microscopy and N2 adsorption/desorption.Structured fixed beds were designed by filling granular adsorbents(5A zeolite or activated carbon)and microfibrous composites at the inlet and outlet of the beds,respectively.Effects of flow rate,bed height and structure on the breakthrough curves were investigated.The length of unused bed(LUB)was determined,and Yoon–Nelson model was used to fit the breakthrough curves.The experimental results showed ethane was effectively adsorbed on the granular adsorbents and microfibrous composites.Both composites could decrease the LUB values and enhance bed utilization.All breakthrough curves fitted well to Yoon–Nelson model,with correlation coefficient exceeding 0.89.The adsorption rate of ethane could be improved in the structured fixed beds,which showed an enhanced mass transfer efficiency for ethane adsorption.LUB values of structured fixed beds with 5A/PSSF composites were larger,the bed utilization values were lower,and the adsorption rate constants were higher than those with MEAC composites under the same conditions.展开更多
以微米尺度的不锈钢纤维、活性炭和针叶木纤维为原料,通过湿法造纸和烧结工艺制备了微纤包覆活性炭复合材料。采用正交试验优化,确定了微纤复合材料的最优制备工艺。利用SEM考察了通过最优制备工艺所得复合材料的微观结构,并采用氮气吸...以微米尺度的不锈钢纤维、活性炭和针叶木纤维为原料,通过湿法造纸和烧结工艺制备了微纤包覆活性炭复合材料。采用正交试验优化,确定了微纤复合材料的最优制备工艺。利用SEM考察了通过最优制备工艺所得复合材料的微观结构,并采用氮气吸附法测定了原活性炭与微纤复合材料中活性炭的孔径分布和比表面积。结果表明,在活性炭和纤维的质量比为13:6,面积尺寸为6 cm 12 cm的烧结压片质量为212 g,于1050℃下烧结20 min所制得的微纤复合材料炭包覆率达到64.3%。不锈钢纤维的连接处被很好地融合在一起,形成一个烧结锁定的三围网络,将活性炭颗粒很好地包覆起来。活性炭在包覆前后的孔结构特性基本保持不变,比表面积分别为678 m2 g 1和769 m2 g 1。通过在固定床层的进口端和出口端分别装填颗粒活性炭和微纤复合材料形成复合床层,测定了甲苯在此复合床层上的吸附透过曲线,并与颗粒活性炭固定床层的实验结果进行比较。结果表明,在相同的条件下,复合床较传统固定床在1%的透过浓度下吸附透过时间延长了大约15 min。展开更多
The hydrophilicity, dyeing and antistatic ability of polypropylene microfibre (PPMF) were improved by plasma-induced vapor grafting with acrylic acid. The effects of plasma discharge time, power, liquid phase acrylic ...The hydrophilicity, dyeing and antistatic ability of polypropylene microfibre (PPMF) were improved by plasma-induced vapor grafting with acrylic acid. The effects of plasma discharge time, power, liquid phase acrylic acid temperature and environmental temperature on grafting yield were investigated. The existence of grafted polyacrylic acid (PAA) was verified by ESCA and ATR FT-IR. The morphology of grafted PAA was directly observed by SEM. The wicking test shows that the hydrophilicity of modified PPMF is greatly enhanced. The dyeability test of modified PPMF was carried out using Dispersion Yellow. It was found that the dye uptake ratio is linear to the weight percent of grafting. The antistatic ability was indicated by specific resistance. The specific resistance of modified PPMF was reduced to 10(6) similar to 10(7) Ohm . cm, thus the antistatic ability was considerably improved.展开更多
A series of disperse dyes bearing ether groups have been synthesized. The visible absorption spectra of them were studied, their fastness on polyester microfibres were investigated.
In this paper, bendloss characteristics of an optical fibre are investigated in detail, and the results show that the resonator with a smaller ring radius, wider free spectrum range (FSR), higher fineness (f) and ...In this paper, bendloss characteristics of an optical fibre are investigated in detail, and the results show that the resonator with a smaller ring radius, wider free spectrum range (FSR), higher fineness (f) and quality-factor (Q) can be achieved by using microfibres. Based on the improved fused taper technique, a high-quality microfibre with 5 ttm radius has been fabricated, and an all-fibre micro-ring resonator with a radius of only 500μm is realized using self-coiling coupling method. The good-resonant characteristic makes the all-fibre device be expected to avoid bendloss and connection loss associated with planar waveguide integration.展开更多
基金financially supported by the National Key Research and Development Program of China(2018YFA0703003)National Natural Science Foundation of China(82072429,52125501,82371590)+6 种基金the Program for Innovation Team of Shaanxi Province(2023-CX-TD-17)the Key Research&Development Program of Shaanxi Province(2024SF-YBXM-355,2020SF-093,2021LLRH-08)the Natural Science Foundation of Henan Province(222300420358)the Postdoctoral Project of Shaanxi Province(2023BSHYDZZ30)the Postdoctoral Fellowship Program of CPSF(GZB20230573)the Institutional Foundation of the First Affiliated Hospital of Xi’an Jiaotong University(2019ZYTS-02)the Fundamental Research Funds for the Central Universities.
文摘The rotator cuff tear has emerged as a significant global health concern.However,existing therapies fail to fully restore the intricate bone-to-tendon gradients,resulting in compromised biomechanical functionalities of the reconstructed enthesis tissues.Herein,a tri-layered core–shell microfibrous scaffold with layer-specific growth factors(GFs)release is developed using coaxial electrohydrodynamic(EHD)printing for in situ cell recruitment and differentiation to facilitate gradient enthesis tissue repair.Stromal cell-derived factor-1(SDF-1)is loaded in the shell,while basic fibroblast GF,transforming GF-beta,and bone morphogenetic protein-2 are loaded in the core of the EHD-printed microfibrous scaffolds in a layer-specific manner.Correspondingly,the tri-layered microfibrous scaffolds have a core–shell fiber size of(25.7±5.1)μm,with a pore size sequentially increasing from(81.5±4.6)μm to(173.3±6.9)μm,and to(388.9±6.9μm)for the tenogenic,chondrogenic,and osteogenic instructive layers.A rapid release of embedded GFs is observed within the first 2 d,followed by a faster release of SDF-1 and a slightly slower release of differentiation GFs for approximately four weeks.The coaxial EHD-printed microfibrous scaffolds significantly promote stem cell recruitment and direct their differentiation toward tenocyte,chondrocyte,and osteocyte phenotypes in vitro.When implanted in vivo,the tri-layered core–shell microfibrous scaffolds rapidly restored the biomechanical functions and promoted enthesis tissue regeneration with native-like bone-to-tendon gradients.Our findings suggest that the microfibrous scaffolds with layer-specific GFs release may offer a promising clinical solution for enthesis regeneration.
文摘A sinter-locked three-dimensional network of microfibrous nickel catalyst has been fabricated based on wet layup papermaking and sintering processes and this novel approach permits the production of -11 W fuel cell power H2 via NH3 decomposition with a conversion of 97% at 750 ℃ in a bed of 0.6 cm^3.
基金support from the National Natural Science Foundation of China(21776101)the National Natural Science Foundation of China(22178122)for this work.
文摘Adsorption dynamics of ethane in two granular fixed beds and structured fixed beds with microfibrous composites was studied.5A zeolite membrane 5A/PSSF(paper-like sintered stainless steel fiber)and microfibrous entrapped activated carbon(MEAC)composites were prepared by wet layup papermaking/sintering technique and in-situ hydrothermal method.Microfibrous composites were characterized by X-ray diffraction,scanning electron microscopy and N2 adsorption/desorption.Structured fixed beds were designed by filling granular adsorbents(5A zeolite or activated carbon)and microfibrous composites at the inlet and outlet of the beds,respectively.Effects of flow rate,bed height and structure on the breakthrough curves were investigated.The length of unused bed(LUB)was determined,and Yoon–Nelson model was used to fit the breakthrough curves.The experimental results showed ethane was effectively adsorbed on the granular adsorbents and microfibrous composites.Both composites could decrease the LUB values and enhance bed utilization.All breakthrough curves fitted well to Yoon–Nelson model,with correlation coefficient exceeding 0.89.The adsorption rate of ethane could be improved in the structured fixed beds,which showed an enhanced mass transfer efficiency for ethane adsorption.LUB values of structured fixed beds with 5A/PSSF composites were larger,the bed utilization values were lower,and the adsorption rate constants were higher than those with MEAC composites under the same conditions.
文摘以微米尺度的不锈钢纤维、活性炭和针叶木纤维为原料,通过湿法造纸和烧结工艺制备了微纤包覆活性炭复合材料。采用正交试验优化,确定了微纤复合材料的最优制备工艺。利用SEM考察了通过最优制备工艺所得复合材料的微观结构,并采用氮气吸附法测定了原活性炭与微纤复合材料中活性炭的孔径分布和比表面积。结果表明,在活性炭和纤维的质量比为13:6,面积尺寸为6 cm 12 cm的烧结压片质量为212 g,于1050℃下烧结20 min所制得的微纤复合材料炭包覆率达到64.3%。不锈钢纤维的连接处被很好地融合在一起,形成一个烧结锁定的三围网络,将活性炭颗粒很好地包覆起来。活性炭在包覆前后的孔结构特性基本保持不变,比表面积分别为678 m2 g 1和769 m2 g 1。通过在固定床层的进口端和出口端分别装填颗粒活性炭和微纤复合材料形成复合床层,测定了甲苯在此复合床层上的吸附透过曲线,并与颗粒活性炭固定床层的实验结果进行比较。结果表明,在相同的条件下,复合床较传统固定床在1%的透过浓度下吸附透过时间延长了大约15 min。
文摘The hydrophilicity, dyeing and antistatic ability of polypropylene microfibre (PPMF) were improved by plasma-induced vapor grafting with acrylic acid. The effects of plasma discharge time, power, liquid phase acrylic acid temperature and environmental temperature on grafting yield were investigated. The existence of grafted polyacrylic acid (PAA) was verified by ESCA and ATR FT-IR. The morphology of grafted PAA was directly observed by SEM. The wicking test shows that the hydrophilicity of modified PPMF is greatly enhanced. The dyeability test of modified PPMF was carried out using Dispersion Yellow. It was found that the dye uptake ratio is linear to the weight percent of grafting. The antistatic ability was indicated by specific resistance. The specific resistance of modified PPMF was reduced to 10(6) similar to 10(7) Ohm . cm, thus the antistatic ability was considerably improved.
文摘A series of disperse dyes bearing ether groups have been synthesized. The visible absorption spectra of them were studied, their fastness on polyester microfibres were investigated.
基金Project supported by the National Natural Science Foundation of China(Grant No60607001)the Natural Science Foundation of Beijing,China(Grant No4052023)the Talents of Beijing Jiaotong University,Beijing,China(Grant No2007RC015)
文摘In this paper, bendloss characteristics of an optical fibre are investigated in detail, and the results show that the resonator with a smaller ring radius, wider free spectrum range (FSR), higher fineness (f) and quality-factor (Q) can be achieved by using microfibres. Based on the improved fused taper technique, a high-quality microfibre with 5 ttm radius has been fabricated, and an all-fibre micro-ring resonator with a radius of only 500μm is realized using self-coiling coupling method. The good-resonant characteristic makes the all-fibre device be expected to avoid bendloss and connection loss associated with planar waveguide integration.