Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to underst...Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also inter- fere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influ- ence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, pro- biotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.展开更多
This paper aims to review the association between gut microbiota and respiratory system diseases, and explore their potential mechanisms and clinical significance. Gut microbiota, as an important microbial ecosystem i...This paper aims to review the association between gut microbiota and respiratory system diseases, and explore their potential mechanisms and clinical significance. Gut microbiota, as an important microbial ecosystem in the human body, has profound effects on host health. Recent studies have shown that the imbalance of gut microbiota is closely related to the occurrence and development of respiratory system diseases, including asthma, chronic obstructive pulmonary disease (COPD), and pneumonia. We comprehensively analyzed the current research progress and found that gut microbiota may affect respiratory system diseases through various pathways, including immune regulation, inflammatory responses, and airway mucus secretion. Additionally, environmental factors, lifestyle, and dietary habits are also closely related to gut microbiota and respiratory system health. Understanding the relationship between gut microbiota and respiratory system diseases not only helps to reveal the mechanisms of disease occurrence but also provides a theoretical basis for the development of new treatment strategies. Future research should focus on exploring the types and functions of gut microbiota, conducting clinical trials based on this, investigating the effects of gut microbiota modulation on the treatment and prevention of respiratory system diseases, and providing new directions for personalized medicine.展开更多
基金supported by the National Institutes of Health (NIH Grant No. CA190122)+3 种基金Department of Defense (Do D Award No. W81XWH-16-1-0151) of the United States awarded to QTsupported by Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (CIFMS Grant No. 2016-12M-1-001) awarded to CB
文摘Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also inter- fere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influ- ence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, pro- biotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
文摘This paper aims to review the association between gut microbiota and respiratory system diseases, and explore their potential mechanisms and clinical significance. Gut microbiota, as an important microbial ecosystem in the human body, has profound effects on host health. Recent studies have shown that the imbalance of gut microbiota is closely related to the occurrence and development of respiratory system diseases, including asthma, chronic obstructive pulmonary disease (COPD), and pneumonia. We comprehensively analyzed the current research progress and found that gut microbiota may affect respiratory system diseases through various pathways, including immune regulation, inflammatory responses, and airway mucus secretion. Additionally, environmental factors, lifestyle, and dietary habits are also closely related to gut microbiota and respiratory system health. Understanding the relationship between gut microbiota and respiratory system diseases not only helps to reveal the mechanisms of disease occurrence but also provides a theoretical basis for the development of new treatment strategies. Future research should focus on exploring the types and functions of gut microbiota, conducting clinical trials based on this, investigating the effects of gut microbiota modulation on the treatment and prevention of respiratory system diseases, and providing new directions for personalized medicine.