末端限制性酶切片段长度多态性分析(Terminal Restriction Fragment LengthPolymorphism,T-RFLP)是近年来发展起来的、不依赖于培养的微生物群落分析方法之一.由于其在微生物群落结构分析方面的特点,包括分辨率高、易于实现自动化及互...末端限制性酶切片段长度多态性分析(Terminal Restriction Fragment LengthPolymorphism,T-RFLP)是近年来发展起来的、不依赖于培养的微生物群落分析方法之一.由于其在微生物群落结构分析方面的特点,包括分辨率高、易于实现自动化及互联网海量数据共享等优势,自1997年最先被报道以来得到了广泛的应用,成为环境微生物群落分析的最强有力的工具之一.类似于其他的分子微生物生态学技术,T-RFLP也有自身的缺陷,本文详细介绍了T-RFLP技术的原理及其解析环境微生物群落的基本流程,简述了近年来T-RFLP技术在群落分析中的研究进展,重点讨论了该技术的局限性及相应的解决办法.展开更多
锑(Sb)是有色金属矿山开采和加工中对环境造成严重威胁的重点污染物,与砷(As)的硫化物和氧化物共存.微生物对土壤中重金属的迁移转化及修复具有重要意义.目前,锑矿不同功能分区(采矿区和冶炼区)中重金属有效态对土壤微生物群落结构的生...锑(Sb)是有色金属矿山开采和加工中对环境造成严重威胁的重点污染物,与砷(As)的硫化物和氧化物共存.微生物对土壤中重金属的迁移转化及修复具有重要意义.目前,锑矿不同功能分区(采矿区和冶炼区)中重金属有效态对土壤微生物群落结构的生态效应仍知之甚少.为掌握不同功能分区中重金属污染特征及重金属有效态与土壤微生物群落之间的相互作用关系,采用Wenzel连续提取法和16S r DNA高通量测序技术测定了Sb和As的化学形态及微生物信息.结果表明,Wenzel连续提取后Sb和As的化学形态分布占比大小为:无定型铁铝氧化物结合态(F3)>晶质铁铝氧化物结合态(F4)>残渣态(F5)>专性吸附态(F2)>非专性吸附态(F1).潜在生态风险指数(RI)和地累积指数(Igeo)显示,Sb污染程度大小为:冶炼区>采矿区>对照区,冶炼区为严重污染,采矿区为中度至重度污染;As污染程度大小为:采矿区>冶炼区>对照区,采矿区和冶炼区均为中度至重度污染.16S r DNA高通量测序显示:Proteobacteria是采矿区与冶炼区中相对丰度最高的门,Kaistobacter、Pseudomonas、Sphingomonas和Lysobacter是采矿区与冶炼区中相对丰度最高的属;Geobacter和Luteolibacter在采矿区有较高的LDA得分,Thiobacillus在冶炼区具有较高的LDA得分.Spearman相关性、方差分解(VPA)和随机森林预测(RF)表明,Sb、As、有效态锑[Sb(Bio)]和有效态砷[As(Bio)]是影响锑矿不同功能分区中微生物群落结构的主要因子;冗余分析(RDA)显示,对属水平微生物群落结构的影响大小为:As(Bio)>Sb(Bio)>Sb>As,Sb及Sb(Bio)和Nitrospira呈现显著负相关关系,和Thiobacillus呈现显著正相关关系(P<0.05).通过深入研究重金属污染特征及重金属有效态对微生物群落结构的生态效应,可为锑矿区生态修复和生态环境管理提供参考.展开更多
文摘末端限制性酶切片段长度多态性分析(Terminal Restriction Fragment LengthPolymorphism,T-RFLP)是近年来发展起来的、不依赖于培养的微生物群落分析方法之一.由于其在微生物群落结构分析方面的特点,包括分辨率高、易于实现自动化及互联网海量数据共享等优势,自1997年最先被报道以来得到了广泛的应用,成为环境微生物群落分析的最强有力的工具之一.类似于其他的分子微生物生态学技术,T-RFLP也有自身的缺陷,本文详细介绍了T-RFLP技术的原理及其解析环境微生物群落的基本流程,简述了近年来T-RFLP技术在群落分析中的研究进展,重点讨论了该技术的局限性及相应的解决办法.
文摘锑(Sb)是有色金属矿山开采和加工中对环境造成严重威胁的重点污染物,与砷(As)的硫化物和氧化物共存.微生物对土壤中重金属的迁移转化及修复具有重要意义.目前,锑矿不同功能分区(采矿区和冶炼区)中重金属有效态对土壤微生物群落结构的生态效应仍知之甚少.为掌握不同功能分区中重金属污染特征及重金属有效态与土壤微生物群落之间的相互作用关系,采用Wenzel连续提取法和16S r DNA高通量测序技术测定了Sb和As的化学形态及微生物信息.结果表明,Wenzel连续提取后Sb和As的化学形态分布占比大小为:无定型铁铝氧化物结合态(F3)>晶质铁铝氧化物结合态(F4)>残渣态(F5)>专性吸附态(F2)>非专性吸附态(F1).潜在生态风险指数(RI)和地累积指数(Igeo)显示,Sb污染程度大小为:冶炼区>采矿区>对照区,冶炼区为严重污染,采矿区为中度至重度污染;As污染程度大小为:采矿区>冶炼区>对照区,采矿区和冶炼区均为中度至重度污染.16S r DNA高通量测序显示:Proteobacteria是采矿区与冶炼区中相对丰度最高的门,Kaistobacter、Pseudomonas、Sphingomonas和Lysobacter是采矿区与冶炼区中相对丰度最高的属;Geobacter和Luteolibacter在采矿区有较高的LDA得分,Thiobacillus在冶炼区具有较高的LDA得分.Spearman相关性、方差分解(VPA)和随机森林预测(RF)表明,Sb、As、有效态锑[Sb(Bio)]和有效态砷[As(Bio)]是影响锑矿不同功能分区中微生物群落结构的主要因子;冗余分析(RDA)显示,对属水平微生物群落结构的影响大小为:As(Bio)>Sb(Bio)>Sb>As,Sb及Sb(Bio)和Nitrospira呈现显著负相关关系,和Thiobacillus呈现显著正相关关系(P<0.05).通过深入研究重金属污染特征及重金属有效态对微生物群落结构的生态效应,可为锑矿区生态修复和生态环境管理提供参考.