Available irrigation resources are becoming increasingly scarce in the North China Plain (NCP),and nitrogen-use efficiency of crop production is also relatively low.Thus,it is imperative to improve the water-use effic...Available irrigation resources are becoming increasingly scarce in the North China Plain (NCP),and nitrogen-use efficiency of crop production is also relatively low.Thus,it is imperative to improve the water-use efficiency (WUE) and nitrogen fertilizer productivity on the NCP.Here,we conducted a two-year field experiment to explore the effects of different irrigation amounts (S60,60 mm;S90,90 mm;S120,120 mm;S150,150 mm) and nitrogen application rates (150,195 and 240 kg ha^(–1);denoted as N1,N2 and N3,respectively) under micro-sprinkling with water and nitrogen combined on the grain yield(GY),yield components,leaf area index (LAI),flag leaf chlorophyll content,dry matter accumulation (DM),WUE,and nitrogen partial factor productivity (NPFP).The results indicated that the GY and NPFP increased significantly with increasing irrigation amount,but there was no significant difference between S120 and S150;WUE significantly increased first but then decreased with increasing irrigation and S120 achieved the highest WUE.The increase in nitrogen was beneficial to improving the GY and WUE in S60 and S90,while the excessive nitrogen application (N3) significantly reduced the GY and WUE in S120 and S150 compared with those in the N2 treatment.The NPFP significantly decreased with increasing nitrogen rate under the same irrigation treatments.The synchronous increase in spike number (SN) and 1 000-grain weight (TWG)was the main reason for the large increase in GY by micro-sprinkling with increasing irrigation,and the differences in SN and TGW between S120 and S150 were small.Under S60 and S90,the TGW increased with increasing nitrogen application,which enhanced the GY,while N2 achieved the highest TWG in S120 and S150.At the filling stage,the LAI increased with increasing irrigation,and greater amounts of irrigation significantly increased the chlorophyll content in the flag leaf,which was instrumental in increasing DM after anthesis and increasing the TGW.Micro-sprinkling with increased amounts of irrigation or excessive nit展开更多
The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving ...The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain.展开更多
基金funded by the National Key Research and Development Program of China(2016YFD0300105 and 2016YFD0300401)the National Natural Science Foundation of China(31871563)the earmarked fund for China Agriculture Research System(CARS-3)。
文摘Available irrigation resources are becoming increasingly scarce in the North China Plain (NCP),and nitrogen-use efficiency of crop production is also relatively low.Thus,it is imperative to improve the water-use efficiency (WUE) and nitrogen fertilizer productivity on the NCP.Here,we conducted a two-year field experiment to explore the effects of different irrigation amounts (S60,60 mm;S90,90 mm;S120,120 mm;S150,150 mm) and nitrogen application rates (150,195 and 240 kg ha^(–1);denoted as N1,N2 and N3,respectively) under micro-sprinkling with water and nitrogen combined on the grain yield(GY),yield components,leaf area index (LAI),flag leaf chlorophyll content,dry matter accumulation (DM),WUE,and nitrogen partial factor productivity (NPFP).The results indicated that the GY and NPFP increased significantly with increasing irrigation amount,but there was no significant difference between S120 and S150;WUE significantly increased first but then decreased with increasing irrigation and S120 achieved the highest WUE.The increase in nitrogen was beneficial to improving the GY and WUE in S60 and S90,while the excessive nitrogen application (N3) significantly reduced the GY and WUE in S120 and S150 compared with those in the N2 treatment.The NPFP significantly decreased with increasing nitrogen rate under the same irrigation treatments.The synchronous increase in spike number (SN) and 1 000-grain weight (TWG)was the main reason for the large increase in GY by micro-sprinkling with increasing irrigation,and the differences in SN and TGW between S120 and S150 were small.Under S60 and S90,the TGW increased with increasing nitrogen application,which enhanced the GY,while N2 achieved the highest TWG in S120 and S150.At the filling stage,the LAI increased with increasing irrigation,and greater amounts of irrigation significantly increased the chlorophyll content in the flag leaf,which was instrumental in increasing DM after anthesis and increasing the TGW.Micro-sprinkling with increased amounts of irrigation or excessive nit
基金the National Key Research and Development Program of China(2017YFD0300203 and 2016YFD0300105)。
文摘The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain.