Lithium-sulfur(Li-S) batteries have the advantages of low-cost and ultra-high energy density(2600 Wh·kg;),which have attracted considerable attention.However,the practical application of Li-S batteries still suff...Lithium-sulfur(Li-S) batteries have the advantages of low-cost and ultra-high energy density(2600 Wh·kg;),which have attracted considerable attention.However,the practical application of Li-S batteries still suffers various intractable problems,such as low electrical conductivity,significant volume expansion,and the shuttle effect of sulfur cathode.Up to now,many tremendous efforts and significant progress have been devoted to settle these problems.One of the most effective strategies is that introducing metal-based compounds(e.g.,metal oxides,-sulfides,-nitrides,carbides,-phosphate,single-metal compounds) to enhance the electrochemical performance of S cathode benefiting from superior adsorption/catalytic ability toward Li;S;(n=1,2,4,8).In this review,we summarized the recent advances in the application of micro/nanoscale catalysts in Li-S system and highlighted the catalytic effect of single-atom compounds.Finally,the challenges and the future research prospects of single-atom catalysts were discussed.展开更多
The slippery liquid-infused porous surfaces inspired by the microstructure of carnivorous nepenthes have aroused widespread attention,which show stable liquid repellency,glorious self-repairing powers and effective an...The slippery liquid-infused porous surfaces inspired by the microstructure of carnivorous nepenthes have aroused widespread attention,which show stable liquid repellency,glorious self-repairing powers and effective anti-fouling properties.The surfaces are manufactured via the infusion of lubricant oil into porous structures,a process which allows other fluids to slide off the interfaces readily.However,the practical applications of slippery liquid-infused surfaces are limited to the complicated preparation processes and poor oil lock ability.We aim to,in this review,present the fundamental theories of the slippery liquid-infused porous surface.Some typical natural examples are clarified while representative fabricating methods such as liquid flame spray,layer-by-layer assembly,lithography and so on are listed.The slippery surface can facilitate the manufacture of transparent and multi-functional slippery materials by means of straightforward procedures.The slippery liquid-infused porous surfaces were applied in hot water repellency,anti-fouling,ice-phobic,water condensation,control of underwater bubble transport and drag reduction.This article discusses all these issues along with emerging applications as well as future challenges.展开更多
This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mecha...This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.展开更多
Mg micro/nanoscale materials with sphere-like morphologies are prepared via a vapor-transport deposition process. The structure and morphology of the asprepared products are characterized by powder X-ray diffraction a...Mg micro/nanoscale materials with sphere-like morphologies are prepared via a vapor-transport deposition process. The structure and morphology of the asprepared products are characterized by powder X-ray diffraction and scanning electron microscopy. Vapor-liquid-solid mechanism is proposed to explain the formation of Mg micro/nanospheres on the basis of the experimental results.展开更多
Micro/nano-porous polymeric material is considered a unique industrial material due to its extremelylow thermal conductivity, low density, and high surface area. Therefore, it is necessary to establishan accurate ther...Micro/nano-porous polymeric material is considered a unique industrial material due to its extremelylow thermal conductivity, low density, and high surface area. Therefore, it is necessary to establishan accurate thermal conductivity prediction model suiting their applicable conditions and provide atheoretical basis for expanding their applications. In this work, the development of the calculationmodel of equivalent thermal conductivity of micro/nano-porous polymeric materials in recent yearsis summarized. Firstly, it reviews the process of establishing the overall equivalent thermal conductivity calculation model for micro/nanoporous polymers. Then, the predicted calculation models ofthermal conductivity are introduced separately according to the conductive and radiative thermalconductivity models. In addition, the thermal conduction part is divided into the gaseous thermalconductivity model, solid thermal conductivity model and gas-solid coupling model. Finally, it isconcluded that, compared with other porous materials, there are few studies on heat transfer of micro/nanoporous polymers, especially on the particular heat transfer mechanisms such as scale effectsat the micro/nanoscale. In particular, the following aspects of porous polymers still need to be furtherstudied: micro scaled thermal radiation, heat transfer characteristics of particular morphologies at thenanoscales, heat transfer mechanism and impact factors of micro/nanoporous polymers. Such studieswould provide a more accurate prediction of thermal conductivity and a broader application in energyconversion and storage systems.展开更多
With the ever-growing demand for renewable energy sources,energy harvesting from natural resources has gained much attention.Energy sources such as heat and mechanical motion could be easily harvested based on pyroele...With the ever-growing demand for renewable energy sources,energy harvesting from natural resources has gained much attention.Energy sources such as heat and mechanical motion could be easily harvested based on pyroelectric,thermoelectric,and piezoelectric effects.The energy harvested from otherwise wasted energy in the environment can be utilized in self-powered micro and nano devices,and wearable electronics,which required onlyµW–mW power.This article reviews pyroelectric energy harvesting with an emphasis on recent developments in pyroelectric energy harvesting and devices at micro/nanoscale.Recent developments are presented and future challenges and opportunities for more efficient materials and devices with higher energy conversion efficiency are also discussed.展开更多
Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently availa...Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently available TPV systems suffer from low conversion efficiency and low throughput. A viable solution to increase their efficiency is to apply micro/nanoscale radiation principles in the design of different components to utilize the characteristics ~f thermal radiation at small distances and in microstructures. Several critical issues are reviewed, such as photovoltaic effect, quantum efficiency and efficiency of TPV system. Emphasis is given to the development of wavelength-selective emitters and filters and the aspects of micro/nanoscale heat transfer. Recent progress, along with the challenges and opportunities for future development of TPV systems are also outlined.展开更多
Thermal characterization becomes challenging as the material size is reduced to micro/nanoscales.Based on scanning probe microscopy(SPM),scanning thermal microscopy(STh M)is able to collect thermophysical characterist...Thermal characterization becomes challenging as the material size is reduced to micro/nanoscales.Based on scanning probe microscopy(SPM),scanning thermal microscopy(STh M)is able to collect thermophysical characteristics of the microscopic domain with high spatial resolution.Starting from its development history,this review introduces the operation mechanism of the instrument in detail,including working principles,thermal probes,quantitative study,and applications.As the core principle of STh M,the heat transfer mechanism section is discussed emphatically.Additionally,the emerging technologies based on the STh M platform are clearly reviewed and corresponding examples are presented in detail.Finally,the current challenges and future opportunities of STh M are discussed.展开更多
基金the National Natural Science Foundation of China(Nos.51771076 and NSFC51621001)Guangdong“Pearl River Talents Plan”(No.2017GC010218)+1 种基金the R&D Program in Key Areas of Guangdong Province(No.2020B0101030005)Guangdong Basic and Applied Basic Research Foundation(No.2020B1515120049)。
文摘Lithium-sulfur(Li-S) batteries have the advantages of low-cost and ultra-high energy density(2600 Wh·kg;),which have attracted considerable attention.However,the practical application of Li-S batteries still suffers various intractable problems,such as low electrical conductivity,significant volume expansion,and the shuttle effect of sulfur cathode.Up to now,many tremendous efforts and significant progress have been devoted to settle these problems.One of the most effective strategies is that introducing metal-based compounds(e.g.,metal oxides,-sulfides,-nitrides,carbides,-phosphate,single-metal compounds) to enhance the electrochemical performance of S cathode benefiting from superior adsorption/catalytic ability toward Li;S;(n=1,2,4,8).In this review,we summarized the recent advances in the application of micro/nanoscale catalysts in Li-S system and highlighted the catalytic effect of single-atom compounds.Finally,the challenges and the future research prospects of single-atom catalysts were discussed.
基金This work is supported by the National Nature Science Foundation of China(NO 51675513 and 51735013).
文摘The slippery liquid-infused porous surfaces inspired by the microstructure of carnivorous nepenthes have aroused widespread attention,which show stable liquid repellency,glorious self-repairing powers and effective anti-fouling properties.The surfaces are manufactured via the infusion of lubricant oil into porous structures,a process which allows other fluids to slide off the interfaces readily.However,the practical applications of slippery liquid-infused surfaces are limited to the complicated preparation processes and poor oil lock ability.We aim to,in this review,present the fundamental theories of the slippery liquid-infused porous surface.Some typical natural examples are clarified while representative fabricating methods such as liquid flame spray,layer-by-layer assembly,lithography and so on are listed.The slippery surface can facilitate the manufacture of transparent and multi-functional slippery materials by means of straightforward procedures.The slippery liquid-infused porous surfaces were applied in hot water repellency,anti-fouling,ice-phobic,water condensation,control of underwater bubble transport and drag reduction.This article discusses all these issues along with emerging applications as well as future challenges.
基金Project supported by the National Natural Science Foundation of China(Nos.12372086,12072374,and 12102485)。
文摘This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.
基金Supported by the National Basic Research Program of China (Grant No.2005CB623607)
文摘Mg micro/nanoscale materials with sphere-like morphologies are prepared via a vapor-transport deposition process. The structure and morphology of the asprepared products are characterized by powder X-ray diffraction and scanning electron microscopy. Vapor-liquid-solid mechanism is proposed to explain the formation of Mg micro/nanospheres on the basis of the experimental results.
基金the National Natural Science Foundation of China(Nos.51776050 and 51536001).
文摘Micro/nano-porous polymeric material is considered a unique industrial material due to its extremelylow thermal conductivity, low density, and high surface area. Therefore, it is necessary to establishan accurate thermal conductivity prediction model suiting their applicable conditions and provide atheoretical basis for expanding their applications. In this work, the development of the calculationmodel of equivalent thermal conductivity of micro/nano-porous polymeric materials in recent yearsis summarized. Firstly, it reviews the process of establishing the overall equivalent thermal conductivity calculation model for micro/nanoporous polymers. Then, the predicted calculation models ofthermal conductivity are introduced separately according to the conductive and radiative thermalconductivity models. In addition, the thermal conduction part is divided into the gaseous thermalconductivity model, solid thermal conductivity model and gas-solid coupling model. Finally, it isconcluded that, compared with other porous materials, there are few studies on heat transfer of micro/nanoporous polymers, especially on the particular heat transfer mechanisms such as scale effectsat the micro/nanoscale. In particular, the following aspects of porous polymers still need to be furtherstudied: micro scaled thermal radiation, heat transfer characteristics of particular morphologies at thenanoscales, heat transfer mechanism and impact factors of micro/nanoporous polymers. Such studieswould provide a more accurate prediction of thermal conductivity and a broader application in energyconversion and storage systems.
文摘With the ever-growing demand for renewable energy sources,energy harvesting from natural resources has gained much attention.Energy sources such as heat and mechanical motion could be easily harvested based on pyroelectric,thermoelectric,and piezoelectric effects.The energy harvested from otherwise wasted energy in the environment can be utilized in self-powered micro and nano devices,and wearable electronics,which required onlyµW–mW power.This article reviews pyroelectric energy harvesting with an emphasis on recent developments in pyroelectric energy harvesting and devices at micro/nanoscale.Recent developments are presented and future challenges and opportunities for more efficient materials and devices with higher energy conversion efficiency are also discussed.
基金Project(2009AA05Z215) supported by the National High Technology Research and Development Program of China
文摘Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently available TPV systems suffer from low conversion efficiency and low throughput. A viable solution to increase their efficiency is to apply micro/nanoscale radiation principles in the design of different components to utilize the characteristics ~f thermal radiation at small distances and in microstructures. Several critical issues are reviewed, such as photovoltaic effect, quantum efficiency and efficiency of TPV system. Emphasis is given to the development of wavelength-selective emitters and filters and the aspects of micro/nanoscale heat transfer. Recent progress, along with the challenges and opportunities for future development of TPV systems are also outlined.
基金supported by the National Key Research and Development Program(2019YFE0119900)US National Science Foundation(CBET1930866,CMMI2032464)+1 种基金National Natural Science Foundation of China(52106220)Natural Science Foundation of Shandong Province(ZR2020ME183).
基金funding from the National Natural Science Foundation of China (51876112)Shanghai Sailing Program (21YF1414200)+1 种基金Discipline of Shanghai-Materials Science and EngineeringShanghai Engineering Research Center of Advanced Thermal Functional Materials
文摘Thermal characterization becomes challenging as the material size is reduced to micro/nanoscales.Based on scanning probe microscopy(SPM),scanning thermal microscopy(STh M)is able to collect thermophysical characteristics of the microscopic domain with high spatial resolution.Starting from its development history,this review introduces the operation mechanism of the instrument in detail,including working principles,thermal probes,quantitative study,and applications.As the core principle of STh M,the heat transfer mechanism section is discussed emphatically.Additionally,the emerging technologies based on the STh M platform are clearly reviewed and corresponding examples are presented in detail.Finally,the current challenges and future opportunities of STh M are discussed.