期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于加权核密度估计与微簇合并的密度峰值聚类算法
1
作者 李智冈 吕莉 +2 位作者 谭德坤 康平 樊棠怀 《信息与控制》 CSCD 北大核心 2024年第3期302-314,共13页
密度峰值聚类(DPC)算法作为一种基于密度的聚类算法,因其简单高效而得到广泛应用,但DPC算法易将一个高密度类簇划分为多个类簇且极易产生分配连带错误。对此,提出了基于加权核密度估计与微簇合并的密度峰值聚类算法(WEMCM-DPC),利用核... 密度峰值聚类(DPC)算法作为一种基于密度的聚类算法,因其简单高效而得到广泛应用,但DPC算法易将一个高密度类簇划分为多个类簇且极易产生分配连带错误。对此,提出了基于加权核密度估计与微簇合并的密度峰值聚类算法(WEMCM-DPC),利用核密度估计和加权K近邻重新定义局部密度,缩小高密度类簇和稀疏类簇的局部密度差异,使类簇中心的识别更加准确;提出了新的微簇间相似性度量准则,减少数据集中过于稀疏或密集样本对其他样本的影响,为微簇合并提供了依据,并且改善了DPC算法的分配连带错误,使聚类结果更加准确。密度分布不均数据集和真实数据集的实验结果表明,WEMCM-DPC算法的聚类结果优于DPC和4个改进算法。 展开更多
关键词 密度峰值 聚类 核密度估计 K近邻 微簇合并
原文传递
二阶自然最近邻和多簇合并的密度峰值聚类算法
2
作者 张紫丹 徐华 杨重阳 《计算机应用研究》 CSCD 北大核心 2023年第12期3559-3565,共7页
密度峰值聚类(density peaks clustering, DPC)算法基于局部密度和相对距离识别簇中心,忽视了样本所处环境对样本点密度的影响,因此不容易发现低密度区域的簇中心;DPC算法采用的单步分配策略的容错性差,一旦一个样本点分配错误,将导致... 密度峰值聚类(density peaks clustering, DPC)算法基于局部密度和相对距离识别簇中心,忽视了样本所处环境对样本点密度的影响,因此不容易发现低密度区域的簇中心;DPC算法采用的单步分配策略的容错性差,一旦一个样本点分配错误,将导致后续一系列样本点分配错误。针对上述问题,提出二阶自然最近邻和多簇合并的密度峰值聚类算法(TNMM-DPC)。首先,引入二阶自然邻居的概念,同时考虑样本点的密度与样本点所处的环境,重新定义了样本点的局部密度,以降低类簇的疏密对类簇中心选择的影响;其次,定义了核心点集来选取初始微簇,依据样本点与微簇间的关联度对样本点进行分配;最后引入了邻居边界点集的概念对相邻的子簇进行合并,得到最终的聚类结果,避免了分配错误连带效应。在人工数据集和UCI数据集上,将TNMM-DPC算法与DPC及其改进算法进行了对比,实验结果表明,TNMM-DPC算法能够解决DPC算法所存在的问题,可以有效聚类人工数据集和UCI数据集。 展开更多
关键词 密度峰值 自然邻居 局部密度 核心点集 子簇合并
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部