先进绝热压缩空气储能(Advanced adiabatic compressed air energy storage,AA-CAES)是一种清洁的大规模物理储能技术。相对于其他类型的储能技术,AA-CAES技术具有多能流联供的独特特性,这一特性使得其在微型综合能源系统中具有广阔的...先进绝热压缩空气储能(Advanced adiabatic compressed air energy storage,AA-CAES)是一种清洁的大规模物理储能技术。相对于其他类型的储能技术,AA-CAES技术具有多能流联供的独特特性,这一特性使得其在微型综合能源系统中具有广阔的应用前景。考虑AA-CAES电站的多能联供特性,研究了含AA-CAES电站的微型综合能源系统优化调度策略。介绍了含AA-CAES电站的微型综合能源系统基本构成;基于AA-CAES电站的实际热力学过程,构建AA-CAES电站的冷热电多能流联合调度约束模型;在此基础上,以最小化系统运行成本为目标,建立含AA-CAES电站的微型综合能源系统优化调度模型;最后,采用天津中新生态城的数据进行模型验证。展开更多
Based on analysis of construction and operation of micro integrated energy systems(MIES), this paper presents economic optimization for their configuration and sizing. After presenting typical models for MIES, a resid...Based on analysis of construction and operation of micro integrated energy systems(MIES), this paper presents economic optimization for their configuration and sizing. After presenting typical models for MIES, a residential community MIES is developed by analyzing residential direct energy consumption within a general design procedure. Integrating with available current technologies and local resources, the systematic design considers a prime mover, fed by natural gas, with wind power, photovoltaic generation, and two storage devices serving thermal energy and power to satisfy cooling, heating and electricity demands. Control strategies for MIES also arepresented in this study. Multi-objective formulas are obtained by analyzing annual cost and dumped renewable energy to achieve optimal coordination of energy supply and demand. According to historical load data and the probability distribution of distributed generation output,clustering methods based on K-means and discretization methods are employed to obtain typical scenarios representative of uncertainties. The modified non-dominated sorting genetic algorithm is applied to find the Pareto frontier of the constructed multi-objective formulas. In addition, aiming to explore the Pareto frontier, the dumped energy cost ratio is defined to check the energy balance in different MIES designs and provide decision support for the investors. Finally, simulations and comparision show the appropriateness of the developed model and the applicability of the adopted optimization algorithm.展开更多
为更好地发挥先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)装置与微型综合能源系统(micro-integrated energy system,MIES)多能协调互补等优势,优化系统运行经济性及灵活性,提出一种考虑AA-CAES装...为更好地发挥先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)装置与微型综合能源系统(micro-integrated energy system,MIES)多能协调互补等优势,优化系统运行经济性及灵活性,提出一种考虑AA-CAES装置参与热电联储/供的MIES优化运行策略。首先,提出了含AA-CAES的MIES系统热电联储/供的调度架构;其次,分析了AA-CAES装置储热、换热及供热等关键环节的运行特性,建立了AA-CAES进行热电联储/供及提供旋转备用的调度模型;在此基础上,综合考虑交直流配电网和区域供热系统中调度资源的运行特点,构建了计及AA-CAES装置热电联储/供特性的MIES整体调度模型;最后,采用修改IEEE 14节点配电网和母线式区域供热系统进行算例分析。仿真结果表明,所提优化运行策略可有效削减MIES运行成本,提高MIES可再生能源消纳能力,增强MIES运行灵活性。展开更多
文摘先进绝热压缩空气储能(Advanced adiabatic compressed air energy storage,AA-CAES)是一种清洁的大规模物理储能技术。相对于其他类型的储能技术,AA-CAES技术具有多能流联供的独特特性,这一特性使得其在微型综合能源系统中具有广阔的应用前景。考虑AA-CAES电站的多能联供特性,研究了含AA-CAES电站的微型综合能源系统优化调度策略。介绍了含AA-CAES电站的微型综合能源系统基本构成;基于AA-CAES电站的实际热力学过程,构建AA-CAES电站的冷热电多能流联合调度约束模型;在此基础上,以最小化系统运行成本为目标,建立含AA-CAES电站的微型综合能源系统优化调度模型;最后,采用天津中新生态城的数据进行模型验证。
基金supported by the Science and Technology Project of State Grid Corporation of China(No.52467K150007)
文摘Based on analysis of construction and operation of micro integrated energy systems(MIES), this paper presents economic optimization for their configuration and sizing. After presenting typical models for MIES, a residential community MIES is developed by analyzing residential direct energy consumption within a general design procedure. Integrating with available current technologies and local resources, the systematic design considers a prime mover, fed by natural gas, with wind power, photovoltaic generation, and two storage devices serving thermal energy and power to satisfy cooling, heating and electricity demands. Control strategies for MIES also arepresented in this study. Multi-objective formulas are obtained by analyzing annual cost and dumped renewable energy to achieve optimal coordination of energy supply and demand. According to historical load data and the probability distribution of distributed generation output,clustering methods based on K-means and discretization methods are employed to obtain typical scenarios representative of uncertainties. The modified non-dominated sorting genetic algorithm is applied to find the Pareto frontier of the constructed multi-objective formulas. In addition, aiming to explore the Pareto frontier, the dumped energy cost ratio is defined to check the energy balance in different MIES designs and provide decision support for the investors. Finally, simulations and comparision show the appropriateness of the developed model and the applicability of the adopted optimization algorithm.
文摘为更好地发挥先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)装置与微型综合能源系统(micro-integrated energy system,MIES)多能协调互补等优势,优化系统运行经济性及灵活性,提出一种考虑AA-CAES装置参与热电联储/供的MIES优化运行策略。首先,提出了含AA-CAES的MIES系统热电联储/供的调度架构;其次,分析了AA-CAES装置储热、换热及供热等关键环节的运行特性,建立了AA-CAES进行热电联储/供及提供旋转备用的调度模型;在此基础上,综合考虑交直流配电网和区域供热系统中调度资源的运行特点,构建了计及AA-CAES装置热电联储/供特性的MIES整体调度模型;最后,采用修改IEEE 14节点配电网和母线式区域供热系统进行算例分析。仿真结果表明,所提优化运行策略可有效削减MIES运行成本,提高MIES可再生能源消纳能力,增强MIES运行灵活性。