This paper introduces a non-assembly manufacturing case with microstereolithography technology. The design and manufacturing process of a pneumatic thrust bearing is described, and a special tessellation method is dev...This paper introduces a non-assembly manufacturing case with microstereolithography technology. The design and manufacturing process of a pneumatic thrust bearing is described, and a special tessellation method is developed to further improve the capability of the manufacturing system thus bigger products can also be easily manufactured. Implemented in a layer-by-layer fashion, stereolithography has been used for the rapid manufacturing of complex devices, and it avoids the expensive assembly process in the traditional manufacturing. This paper presents that microstereolithography can produce high-resolution products with intricate details, small openings, and smooth surfaces. The potential of the microstereolithograhy technique is explored for the rapid manufacturing of small and complex objects.展开更多
背景:血管内皮细胞衰老、凋亡与再生的平衡对正常血管的功能维持具有极其重要的作用。而线粒体是机体细胞内的重要细胞器,除了合成 ATP 为细胞提供能量外,还控制细胞程序性死亡、以及衰老等多种病理生理的代谢过程。目的:通过检测脐静...背景:血管内皮细胞衰老、凋亡与再生的平衡对正常血管的功能维持具有极其重要的作用。而线粒体是机体细胞内的重要细胞器,除了合成 ATP 为细胞提供能量外,还控制细胞程序性死亡、以及衰老等多种病理生理的代谢过程。目的:通过检测脐静脉内皮细胞传代过程中线粒体膜电位与活性氧的改变及其相互关系,从而探讨细胞衰老过程中所产生的功能障碍。方法:体外培养人脐静脉内皮细胞,选取传代过程中的第 2,4,6,8 代细胞,采用流式细胞术检测细胞线粒体膜电位及活性氧变化。选取第 2,8 代细胞行透射电镜检查,观察正常及衰老细胞超微结构的改变。结果与结论:传代衰老过程中,血管内皮细胞线粒体膜电位逐代降低,而胞内活性氧则出现由增加转而降低的过程。传代后期血管内皮细胞同早期内皮细胞相比,线粒体及内质网明显减少。说明内皮细胞在传代导致的复制性衰老过程中,线粒体膜电位降低,线粒体受损。而在早期传代过程中线粒体轻度受损,而活性氧产生增加,但在线粒体严重受损、功能严重退化过程中,活性氧产生降低。展开更多
基金Supported by Centre of Excellence in Customized Assembly(CECA)
文摘This paper introduces a non-assembly manufacturing case with microstereolithography technology. The design and manufacturing process of a pneumatic thrust bearing is described, and a special tessellation method is developed to further improve the capability of the manufacturing system thus bigger products can also be easily manufactured. Implemented in a layer-by-layer fashion, stereolithography has been used for the rapid manufacturing of complex devices, and it avoids the expensive assembly process in the traditional manufacturing. This paper presents that microstereolithography can produce high-resolution products with intricate details, small openings, and smooth surfaces. The potential of the microstereolithograhy technique is explored for the rapid manufacturing of small and complex objects.