This paper studies the flow characteristics in micro/nano-channels subjected to an applied electric field. The nano-channel flow was observed by means of the fluorescence Calcein. A Fluorescence Concentration Gradient...This paper studies the flow characteristics in micro/nano-channels subjected to an applied electric field. The nano-channel flow was observed by means of the fluorescence Calcein. A Fluorescence Concentration Gradient Interface (FCGI) was observed across the nano-channel array. The front of the FCGI was shown to have an analogous parabolic shape. The propagation of this interface reflects indirectly the induced pressure at the micro/nano-channel junction, where the enrichment-depletion processes are known to take place. This induced pressure was predicted by numerical simulations, and this paper gives the first experimental evidence.展开更多
In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the move...In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the movement of single molecule within micro-/submicro-fluidic channels, the characteristics of current signals at the initial stage of the flow are systematically studied based on a three-electrode system. The current response of micro-/submicro-fluidic channels filled with different electrolyte solutions in non-continuous external electric field are investigated. It is found, there always exists a current reversal phenomenon, which is an inherent property of the current signals in micro/submicro-fluidics Each solution has an individual critical voltage under which the steady current value is equal to zero The interaction between the steady current and external applied voltage follows an exponential function. All these results can be attributed to the overpotentials of the electric double layer on the electrodes. These results are helpful for the design and fabrication of functional micro/nano-scale fluidic sensors and biochips.展开更多
针对微纳卫星的测控数传需求,利用业务无线电及ISM(Industrial-Scientific-Medical,工业-科学-医疗)频段和设备,设计了适用微纳卫星的便携式测控站,包括ISM和VHF/UHF(Very High Frequency/Ultra High Frequency,甚高频/超高频)2个通道;...针对微纳卫星的测控数传需求,利用业务无线电及ISM(Industrial-Scientific-Medical,工业-科学-医疗)频段和设备,设计了适用微纳卫星的便携式测控站,包括ISM和VHF/UHF(Very High Frequency/Ultra High Frequency,甚高频/超高频)2个通道;优选了COTS(Commercial Off The Shelf,商用现货)ISM通信电台和VHF/UHF全模式电台、VHF/UHF八木天线、S频段花瓣式网状抛物面天线等部组件,3副天线共用1个伺服机构;并对ISM和VHF/UHF信道的上/下行链路电平进行估算。结果表明:该多频段多通道便携测控站的设计方案可行性好,效费比高,并已在相关微纳卫星的测控应用中得到验证。展开更多
基金supported by the Chinese Academy of Sciences Research and Development Program of China(Grant No.KJCX2-YW-H18)the National Natural Science Foundation of China(Grant No.10872203)the National Key Basic Research Development Program of China(973Program,Grant No2007CB714501)
文摘This paper studies the flow characteristics in micro/nano-channels subjected to an applied electric field. The nano-channel flow was observed by means of the fluorescence Calcein. A Fluorescence Concentration Gradient Interface (FCGI) was observed across the nano-channel array. The front of the FCGI was shown to have an analogous parabolic shape. The propagation of this interface reflects indirectly the induced pressure at the micro/nano-channel junction, where the enrichment-depletion processes are known to take place. This induced pressure was predicted by numerical simulations, and this paper gives the first experimental evidence.
基金supported by the National Natural Science Foundation of China(Grant Nos.61378083 and 11672229)the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011DFA12220)+2 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.91123030)the Natural Science Foundation of Shaanxi Province of China(Grant Nos.2010JS110,14JS106,14JS107,and 2013SZS03-Z01)the Natural Science Basic Research Program of Shaanxi Province-Major Basic Research Project(Grant No.2016ZDJC-15)
文摘In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the movement of single molecule within micro-/submicro-fluidic channels, the characteristics of current signals at the initial stage of the flow are systematically studied based on a three-electrode system. The current response of micro-/submicro-fluidic channels filled with different electrolyte solutions in non-continuous external electric field are investigated. It is found, there always exists a current reversal phenomenon, which is an inherent property of the current signals in micro/submicro-fluidics Each solution has an individual critical voltage under which the steady current value is equal to zero The interaction between the steady current and external applied voltage follows an exponential function. All these results can be attributed to the overpotentials of the electric double layer on the electrodes. These results are helpful for the design and fabrication of functional micro/nano-scale fluidic sensors and biochips.
文摘针对微纳卫星的测控数传需求,利用业务无线电及ISM(Industrial-Scientific-Medical,工业-科学-医疗)频段和设备,设计了适用微纳卫星的便携式测控站,包括ISM和VHF/UHF(Very High Frequency/Ultra High Frequency,甚高频/超高频)2个通道;优选了COTS(Commercial Off The Shelf,商用现货)ISM通信电台和VHF/UHF全模式电台、VHF/UHF八木天线、S频段花瓣式网状抛物面天线等部组件,3副天线共用1个伺服机构;并对ISM和VHF/UHF信道的上/下行链路电平进行估算。结果表明:该多频段多通道便携测控站的设计方案可行性好,效费比高,并已在相关微纳卫星的测控应用中得到验证。