MicroRNAs (miRNAs) are a class of naturally occurring small non-coding RNAs that target protein-coding mRNAs at the post-transcriptional level. Our previous studies suggest that mir-21 functions as an oncogene and h...MicroRNAs (miRNAs) are a class of naturally occurring small non-coding RNAs that target protein-coding mRNAs at the post-transcriptional level. Our previous studies suggest that mir-21 functions as an oncogene and has a role in tumorigenesis, in part through regulation of the tumor suppressor gene tropomyosin 1 (TPM1). Given that TPM1 has been implicated in cell migration, in this study we further investigated the role of mir-21 in cell invasion and tumor metastasis. We found that suppression of mir-21 in metastatic breast cancer MDA-MB-231 cells significantly reduced invasion and lung metastasis. Consistent with this, ectopic expression of TPM1 remarkably reduced cell invasion. Furthermore, we identified two additional direct mir-21 targets, programmed cell death 4 (PDCD4) and maspin, both of which have been implicated in invasion and metastasis. Like TPM1, PDCD4 and maspin also reduced invasiveness of MDA-MB-231 cells. Finally, the expression of PDCD4 and maspin inversely correlated with mir-21 expression in human breast tumor specimens, indicating the potential regulation of PDCD4 and maspin by mir-21 in these tumors. Taken together, the results suggest that, as an oncogenic miRNA, mir-21 has a role not only in tumor growth but also in invasion and tumor metastasis by targeting multiple tumor/metastasis suppressor genes. Therefore, suppression of mir-21 may provide a novel approach for the treatment of advanced cancers.展开更多
Liver cirrhosis is the final pathological result of various chronic liver diseases,and fibrosis is the precursor of cirrhosis.Many types of cells,cytokines and miRNAs are involved in the initiation and progression of ...Liver cirrhosis is the final pathological result of various chronic liver diseases,and fibrosis is the precursor of cirrhosis.Many types of cells,cytokines and miRNAs are involved in the initiation and progression of liver fibrosis and cirrhosis.Activation of hepatic stellate cells(HSCs)is a pivotal event in fibrosis.Defenestration and capillarization of liver sinusoidal endothelial cells are major contributing factors to hepatic dysfunction in liver cirrhosis.Activated Kupffer cells destroy hepatocytes and stimulate the activation of HSCs.Repeated cycles of apoptosis and regeneration of hepatocytes contribute to pathogenesis of cirrhosis.At the molecular level,many cytokines are involved in mediation of signaling pathways that regulate activation of HSCs and fibrogenesis.Recently,miRNAs as a post-transcriptional regulator have been found to play a key role in fibrosis and cirrhosis.Robust animal models of liver fibrosis and cirrhosis,as well as the recently identified critical cellular and molecular factors involved in the development of liver fibrosis and cirrhosis will facilitate the development of more effective therapeutic approaches for these conditions.展开更多
MicroRNAs (miRNAs) are a class of short, endogenously-initiated non-coding RNAs that post-transcriptionally control gene expression via either translational repression or mRNA degradation. It is becoming evident tha...MicroRNAs (miRNAs) are a class of short, endogenously-initiated non-coding RNAs that post-transcriptionally control gene expression via either translational repression or mRNA degradation. It is becoming evident that miRNAs are playing significant roles in regulatory mechanisms operating in various organisms, including developmental timing and host-pathogen interactions as well as cell differentiation, proliferation, apoptosis and tumorigenesis. Likewise, as a regulatory element, miRNA itself is coordinatively modulated by multifarious effectors when carrying out basic functions, such as SNP, miRNA editing, methylation and circadian clock. This mini-review summarized the current understanding of interactions between miRNAs and their targets, including recent advancements in deciphering the regulatory mechanisms that control the biogenesis and functionality of miRNAs in various cellular processes.展开更多
Studies have shown cell-free microRNA(miRNA) circulating in the serum and plasma with specific expression in cancer,indicating the potential of using miRNAs as biomarkers for cancer diagnosis and therapy.This study wa...Studies have shown cell-free microRNA(miRNA) circulating in the serum and plasma with specific expression in cancer,indicating the potential of using miRNAs as biomarkers for cancer diagnosis and therapy.This study was to investigate whether plasma miRNA-21(miR-21) can be used as a biomarker for the early detection of non-small cell lung cancer(NSCLC) and to explore its association with clinicopathologic features and sensitivity to platinum-based chemotherapy.We used real-time RT-PCR to investigate the expression of miR-21 in the plasma of 63 NSCLC patients and 30 healthy controls and correlated the findings with early diagnosis,pathologic parameters,and treatment.Thirty-five patients(stages IIIB and IV) were evaluable for chemotherapeutic responses:11 had partial response(PR);24 had stable and progressive disease(SD+PD).Plasma miR-21 was significantly higher in NSCLC patients than in age-and sex-matched controls(P<0.001).miR-21 was related to TNM stage(P<0.001),but not related to age,sex,smoking status,histological classification,lymph node status,and metastasis(all P>0.05).This marker yielded a receiver operating characteristic(ROC) curve area of 0.775(95% CI:0.681-0.868) with 76.2% sensitivity and 70.0% specificity.Importantly,miR-21 plasma levels in PR samples were several folds lower than that in SD plus PD samples(P=0.049),and were close to that in healthy controls(P=0.130).Plasma miR-21 can serve as a circulating tumor biomarker for the early diagnosis of NSCLC and is related to the sensitivity to platinum-base chemotherapy.展开更多
Growth-regulating factors (GRFs) are plant-specific transcription factors that were originally identified for their roles in stem and leaf development, but recent studies highlight them to be similarly important for...Growth-regulating factors (GRFs) are plant-specific transcription factors that were originally identified for their roles in stem and leaf development, but recent studies highlight them to be similarly important for other central developmental processes including flower and seed formation, root development, and the coordination of growth processes under adverse environmental conditions. The expression of several GRFs is controlled by microRNA miR396, and the GRF-miRNA396 regulatory module appears to be central to several of these processes. In addition, transcription factors upstream of GRFs and miR396 have been discovered, and gradually downstream target genes of GRFs are being unraveled. Here, we review the current knowledge of the biological functions performed by GRFs and survey available molecular data to illustrate how they exert their roles at the cellular level.展开更多
Emerging evidence has shown the association of aberrantly expressed microRNAs (miRNAs) with tumor development and progression. However, little is known about the potential role of miRNAs in gastric carcinogenesis. H...Emerging evidence has shown the association of aberrantly expressed microRNAs (miRNAs) with tumor development and progression. However, little is known about the potential role of miRNAs in gastric carcinogenesis. Here, we performed miRNA microarray to screen miRNAs differentially expressed in the paired gastric cancer and their adjacent nontumor tissues and found that miR-375 was greatly downregulated in gastric cancer tissues. Quantitative real-time PCR analysis verified that miR-375 expression was significantly decreased in more than 90% of primary gastric cancers compared with their nontumor counterparts from patients undergoing gastric resection. Overexpression of miR-375 significantly inhibited gastric cancer cell proliferation in vitro and in vivo. Forced expression of miR-375 in gastric cancer cells significantly reduced the protein level of Janus kinase 2 (JAK2) and repressed the activity of a luciferase reporter carrying the 3'-untranslated region of JAK2, which was abolished by mutation of the predicted miR-375-binding site, indicating that JAK2 may be a miR-375 target gene. Either inhibition of JAK2 activity by AG490 or silencing of JAK2 by RNAi suppressed gastric cancer cell proliferation resembling that of miR-375 overexpression. Moreover, ectopic expression of JAK2 can partially reverse the inhibition of cell proliferation caused by miR-375. Finally, we found a significant inverse correlation between miR-375 expression and JAK2 protein level in gastric cancer. Thus, these data suggest that miR-375 may function as a tumor suppressor to regulate gastric cancer cell proliferation potentially by targeting the JAK2 oncogene, implicating a role of miR-375 in the pathogenesis of gastric cancer.展开更多
MicroRNAs (miRNAs) are endogenous, small, non-coding RNAs, which are capable of silencing gene expression at the post-transcriptional level. In this study, we report that miR-205 is significantly underexpressed in b...MicroRNAs (miRNAs) are endogenous, small, non-coding RNAs, which are capable of silencing gene expression at the post-transcriptional level. In this study, we report that miR-205 is significantly underexpressed in breast tumor compared to the matched normal breast tissue. Similarly, breast cancer cell lines, including MCF-7 and MDA-MB- 231, express a lower level miR-205 than the non-malignant MCF-10A cells. Of interest, ectopic expression of miR-205 significantly inhibits cell proliferation and anchorage independent growth, as well as cell invasion. Furthermore, miR- 205 was shown to suppress lung metastasis in an animal model. Finally, western blot combined with the luciferase reporter assays demonstrate that ErbB3 and vascular endothelial growth factor A (VEGF-A) are direct targets for miR-205, and this miR-205-mediated suppression is likely through the direct interaction with the putative miR-205 binding site in the 3'-untranslated region (3'-UTR) of ErbB3 and VEGF-A. Together, these results suggest that miR- 205 is a tumor suppressor in breast cancer.展开更多
MicroRNAs (miRNAs) are essential for regulating cell differentiation and maintaining the pluripotent state of stem cells. Although dysregulation of specific miRNAs has been associated with certain types of cancer, t...MicroRNAs (miRNAs) are essential for regulating cell differentiation and maintaining the pluripotent state of stem cells. Although dysregulation of specific miRNAs has been associated with certain types of cancer, to date no evidence has linked miRNA expression in embryonic and tumor tissues. We assessed the expression of mature miRNAs in human embryonic colon tissue, and in colorectal cancer and paired normal colon tissue. Overlapping miRNA expression was detected between embryonic colonic mucosa and colorectal cancer. We have found that the miR-17-92 cluster and its target, E2F1, exhibit a similar pattern of expression in human colon development and colonic carcinogenesis, regulating cell proliferation in both cases. In situ hybridization confirmed the high level of expression of miR-17-5p in the crypt progenitor compartment. We conclude that miRNA pathways play a major role in both embryonic development and neoplastic transformation of the colonic epithelium.展开更多
During the course of their life cycles, plants undergo various morphological and physiological changes un- derlying juvenile-to-adult and adult-to-flowering phase transitions. To flower or not to flower is a key step ...During the course of their life cycles, plants undergo various morphological and physiological changes un- derlying juvenile-to-adult and adult-to-flowering phase transitions. To flower or not to flower is a key step of plasticity of a plant toward the start of its new life cycle. In addition to the previously revealed intrinsic genetic programs, exogenous cues, and endogenous cues, a class of small non-coding RNAs, microRNAs (miRNAs), plays a key role in plants making the decision to flower by integrating into the known flowering pathways. This review highlights the age-dependent flowering pathway with a focus on a number of timing miRNAs in determining such a key process. The contributions of other miRNAs which exist mainly outside the age pathway are also discussed. Approaches to study the flowering-determining miRNAs, their inter- actions, and applications are presented.展开更多
文摘MicroRNAs (miRNAs) are a class of naturally occurring small non-coding RNAs that target protein-coding mRNAs at the post-transcriptional level. Our previous studies suggest that mir-21 functions as an oncogene and has a role in tumorigenesis, in part through regulation of the tumor suppressor gene tropomyosin 1 (TPM1). Given that TPM1 has been implicated in cell migration, in this study we further investigated the role of mir-21 in cell invasion and tumor metastasis. We found that suppression of mir-21 in metastatic breast cancer MDA-MB-231 cells significantly reduced invasion and lung metastasis. Consistent with this, ectopic expression of TPM1 remarkably reduced cell invasion. Furthermore, we identified two additional direct mir-21 targets, programmed cell death 4 (PDCD4) and maspin, both of which have been implicated in invasion and metastasis. Like TPM1, PDCD4 and maspin also reduced invasiveness of MDA-MB-231 cells. Finally, the expression of PDCD4 and maspin inversely correlated with mir-21 expression in human breast tumor specimens, indicating the potential regulation of PDCD4 and maspin by mir-21 in these tumors. Taken together, the results suggest that, as an oncogenic miRNA, mir-21 has a role not only in tumor growth but also in invasion and tumor metastasis by targeting multiple tumor/metastasis suppressor genes. Therefore, suppression of mir-21 may provide a novel approach for the treatment of advanced cancers.
文摘Liver cirrhosis is the final pathological result of various chronic liver diseases,and fibrosis is the precursor of cirrhosis.Many types of cells,cytokines and miRNAs are involved in the initiation and progression of liver fibrosis and cirrhosis.Activation of hepatic stellate cells(HSCs)is a pivotal event in fibrosis.Defenestration and capillarization of liver sinusoidal endothelial cells are major contributing factors to hepatic dysfunction in liver cirrhosis.Activated Kupffer cells destroy hepatocytes and stimulate the activation of HSCs.Repeated cycles of apoptosis and regeneration of hepatocytes contribute to pathogenesis of cirrhosis.At the molecular level,many cytokines are involved in mediation of signaling pathways that regulate activation of HSCs and fibrogenesis.Recently,miRNAs as a post-transcriptional regulator have been found to play a key role in fibrosis and cirrhosis.Robust animal models of liver fibrosis and cirrhosis,as well as the recently identified critical cellular and molecular factors involved in the development of liver fibrosis and cirrhosis will facilitate the development of more effective therapeutic approaches for these conditions.
文摘MicroRNAs (miRNAs) are a class of short, endogenously-initiated non-coding RNAs that post-transcriptionally control gene expression via either translational repression or mRNA degradation. It is becoming evident that miRNAs are playing significant roles in regulatory mechanisms operating in various organisms, including developmental timing and host-pathogen interactions as well as cell differentiation, proliferation, apoptosis and tumorigenesis. Likewise, as a regulatory element, miRNA itself is coordinatively modulated by multifarious effectors when carrying out basic functions, such as SNP, miRNA editing, methylation and circadian clock. This mini-review summarized the current understanding of interactions between miRNAs and their targets, including recent advancements in deciphering the regulatory mechanisms that control the biogenesis and functionality of miRNAs in various cellular processes.
基金supported by grants from the National Natural Science Foundation of China(No.30772549)the Medical Sci-Tech Development Foundation from Health Department of Jiangsu Province(No.P200965)
文摘Studies have shown cell-free microRNA(miRNA) circulating in the serum and plasma with specific expression in cancer,indicating the potential of using miRNAs as biomarkers for cancer diagnosis and therapy.This study was to investigate whether plasma miRNA-21(miR-21) can be used as a biomarker for the early detection of non-small cell lung cancer(NSCLC) and to explore its association with clinicopathologic features and sensitivity to platinum-based chemotherapy.We used real-time RT-PCR to investigate the expression of miR-21 in the plasma of 63 NSCLC patients and 30 healthy controls and correlated the findings with early diagnosis,pathologic parameters,and treatment.Thirty-five patients(stages IIIB and IV) were evaluable for chemotherapeutic responses:11 had partial response(PR);24 had stable and progressive disease(SD+PD).Plasma miR-21 was significantly higher in NSCLC patients than in age-and sex-matched controls(P<0.001).miR-21 was related to TNM stage(P<0.001),but not related to age,sex,smoking status,histological classification,lymph node status,and metastasis(all P>0.05).This marker yielded a receiver operating characteristic(ROC) curve area of 0.775(95% CI:0.681-0.868) with 76.2% sensitivity and 70.0% specificity.Importantly,miR-21 plasma levels in PR samples were several folds lower than that in SD plus PD samples(P=0.049),and were close to that in healthy controls(P=0.130).Plasma miR-21 can serve as a circulating tumor biomarker for the early diagnosis of NSCLC and is related to the sensitivity to platinum-base chemotherapy.
文摘Growth-regulating factors (GRFs) are plant-specific transcription factors that were originally identified for their roles in stem and leaf development, but recent studies highlight them to be similarly important for other central developmental processes including flower and seed formation, root development, and the coordination of growth processes under adverse environmental conditions. The expression of several GRFs is controlled by microRNA miR396, and the GRF-miRNA396 regulatory module appears to be central to several of these processes. In addition, transcription factors upstream of GRFs and miR396 have been discovered, and gradually downstream target genes of GRFs are being unraveled. Here, we review the current knowledge of the biological functions performed by GRFs and survey available molecular data to illustrate how they exert their roles at the cellular level.
基金Supplementary information is linked to the online version of the paper on Cell Research website.Acknowledgments This work was supported by the National Natural Scientific Foundation of China (30901714, 30671070 and 30771107), the Ministry of Science and Technology of China (2007CB914500), the Ministry of Education of China (NCET-06-0530), the Ministry of Health of China (WKJ2006-2-014), the Postdoctoral Science Foundation of China (20070421179), the Department of Science and Technology of Zhejiang Province (2009F80032), and the Natural Scientific Foundation of Zhejiang Province, China (R205291, Y206103 and 2007R10G2010103).
文摘Emerging evidence has shown the association of aberrantly expressed microRNAs (miRNAs) with tumor development and progression. However, little is known about the potential role of miRNAs in gastric carcinogenesis. Here, we performed miRNA microarray to screen miRNAs differentially expressed in the paired gastric cancer and their adjacent nontumor tissues and found that miR-375 was greatly downregulated in gastric cancer tissues. Quantitative real-time PCR analysis verified that miR-375 expression was significantly decreased in more than 90% of primary gastric cancers compared with their nontumor counterparts from patients undergoing gastric resection. Overexpression of miR-375 significantly inhibited gastric cancer cell proliferation in vitro and in vivo. Forced expression of miR-375 in gastric cancer cells significantly reduced the protein level of Janus kinase 2 (JAK2) and repressed the activity of a luciferase reporter carrying the 3'-untranslated region of JAK2, which was abolished by mutation of the predicted miR-375-binding site, indicating that JAK2 may be a miR-375 target gene. Either inhibition of JAK2 activity by AG490 or silencing of JAK2 by RNAi suppressed gastric cancer cell proliferation resembling that of miR-375 overexpression. Moreover, ectopic expression of JAK2 can partially reverse the inhibition of cell proliferation caused by miR-375. Finally, we found a significant inverse correlation between miR-375 expression and JAK2 protein level in gastric cancer. Thus, these data suggest that miR-375 may function as a tumor suppressor to regulate gastric cancer cell proliferation potentially by targeting the JAK2 oncogene, implicating a role of miR-375 in the pathogenesis of gastric cancer.
文摘MicroRNAs (miRNAs) are endogenous, small, non-coding RNAs, which are capable of silencing gene expression at the post-transcriptional level. In this study, we report that miR-205 is significantly underexpressed in breast tumor compared to the matched normal breast tissue. Similarly, breast cancer cell lines, including MCF-7 and MDA-MB- 231, express a lower level miR-205 than the non-malignant MCF-10A cells. Of interest, ectopic expression of miR-205 significantly inhibits cell proliferation and anchorage independent growth, as well as cell invasion. Furthermore, miR- 205 was shown to suppress lung metastasis in an animal model. Finally, western blot combined with the luciferase reporter assays demonstrate that ErbB3 and vascular endothelial growth factor A (VEGF-A) are direct targets for miR-205, and this miR-205-mediated suppression is likely through the direct interaction with the putative miR-205 binding site in the 3'-untranslated region (3'-UTR) of ErbB3 and VEGF-A. Together, these results suggest that miR- 205 is a tumor suppressor in breast cancer.
文摘MicroRNAs (miRNAs) are essential for regulating cell differentiation and maintaining the pluripotent state of stem cells. Although dysregulation of specific miRNAs has been associated with certain types of cancer, to date no evidence has linked miRNA expression in embryonic and tumor tissues. We assessed the expression of mature miRNAs in human embryonic colon tissue, and in colorectal cancer and paired normal colon tissue. Overlapping miRNA expression was detected between embryonic colonic mucosa and colorectal cancer. We have found that the miR-17-92 cluster and its target, E2F1, exhibit a similar pattern of expression in human colon development and colonic carcinogenesis, regulating cell proliferation in both cases. In situ hybridization confirmed the high level of expression of miR-17-5p in the crypt progenitor compartment. We conclude that miRNA pathways play a major role in both embryonic development and neoplastic transformation of the colonic epithelium.
文摘During the course of their life cycles, plants undergo various morphological and physiological changes un- derlying juvenile-to-adult and adult-to-flowering phase transitions. To flower or not to flower is a key step of plasticity of a plant toward the start of its new life cycle. In addition to the previously revealed intrinsic genetic programs, exogenous cues, and endogenous cues, a class of small non-coding RNAs, microRNAs (miRNAs), plays a key role in plants making the decision to flower by integrating into the known flowering pathways. This review highlights the age-dependent flowering pathway with a focus on a number of timing miRNAs in determining such a key process. The contributions of other miRNAs which exist mainly outside the age pathway are also discussed. Approaches to study the flowering-determining miRNAs, their inter- actions, and applications are presented.