MicroRNAs (miRNAs) are small noncoding RNAs that have a pivotal role in the post-transcriptional regulation of gene expression by sequence-specifically targeting multiple mRNAs. Although miR-33a was recently repotte...MicroRNAs (miRNAs) are small noncoding RNAs that have a pivotal role in the post-transcriptional regulation of gene expression by sequence-specifically targeting multiple mRNAs. Although miR-33a was recently repotted to play an important role in lipid homeostasis, atherosclerosis, and hepatic fibrosis, the functions of miR-33a in tumor progression and metastasis are lar- gely unknown. Here, we found that downregulated miR- 33a in breast cancer tissues correlates with lymph node metastasis. MiR-33a expression is significantly lower in the highly metastatic breast cancer cell lines than the noncancerous breast epithelial cells and non-metastatic breast cancer cells. Moreover, the overexpression of miR-33a in metastatic breast cancer cells remarkably decreases cell proliferation and invasion in vitro and significantly inhibits tumor growth and lung metastasis in vivo, whereas its knockdown in non-metastatic breast cancer cells significantly enhances cell proliferation and invasion in vitro and promotes tumor growth and lung metastasis in vivo. Combining bioinformatics prediction and biochemical analyses, we showed that ADAM9 and ROS1 are direct downstream targets of miR-33a. These findings identified miR-33a as a negative regulator of breast cancer cell proliferation and metastasis.展开更多
Background:Diabetes retinopathy(DR)is a complication of diabetes that affects patients’vision.Previous studies have found blueberry anthocyanins extract(BAE)can inhibit the progression of DR,but its mechanism is not ...Background:Diabetes retinopathy(DR)is a complication of diabetes that affects patients’vision.Previous studies have found blueberry anthocyanins extract(BAE)can inhibit the progression of DR,but its mechanism is not completely clear.Methods:To study the role of BAE in diabetes retinopathy,we treated human retinal endothelial cells(HRCECs)with 30 mM high glucose to simulate the microenvironment of diabetes retinopathy and used BAE to intervene the in vitro high glucose-induced retinopathy model.HRCEC cell viability and apoptosis rates were examined by Cell Counting Kit 8(CCK-8)assay and flow cytometry assay.The binding sites between miR-33 and glucocorticoid-induced transcript 1(GLCCI1)were assessed by luciferase reporter assay.Retinal neovascularization and oxidative stress contribute to diabetic retinopathy.The tubule formation assay was applied to detect the retinal neovascularization.The oxidative stress in the HRCECs was manifested by the reactive oxygen species(ROS)level,the malondialdehyde(MDA)level,and the superoxide dismutase(SOD)activity.Results:Compared with HRCECs cells cultured under normal conditions,high glucose(HG)can induce oxidative stress in HRCRCs,specifically manifested in the increase of ROS and MDA levels,and the decrease of SOD activity.BAE relieved the tubule formation in n the HRCEC.BAE also relieved the ROS and MDA levels and increased the SOD activity.Luciferase reporter assay revealed that GLCCI1 is a target molecule downstream of miR-33.In HRCEC,BAE significantly inhibited the expression of miR-33 induced by HG.miR-33 mimic inhibited the BAE’s effects on oxidative stress and angiogenesis in an in vitro high glucose-induced retinopathy model.Conclusion:BAE alleviated the oxidative stress and microangiogenesis of HRCEC by regulating the miR-33/GLCCI1 axis.展开更多
文摘MicroRNAs (miRNAs) are small noncoding RNAs that have a pivotal role in the post-transcriptional regulation of gene expression by sequence-specifically targeting multiple mRNAs. Although miR-33a was recently repotted to play an important role in lipid homeostasis, atherosclerosis, and hepatic fibrosis, the functions of miR-33a in tumor progression and metastasis are lar- gely unknown. Here, we found that downregulated miR- 33a in breast cancer tissues correlates with lymph node metastasis. MiR-33a expression is significantly lower in the highly metastatic breast cancer cell lines than the noncancerous breast epithelial cells and non-metastatic breast cancer cells. Moreover, the overexpression of miR-33a in metastatic breast cancer cells remarkably decreases cell proliferation and invasion in vitro and significantly inhibits tumor growth and lung metastasis in vivo, whereas its knockdown in non-metastatic breast cancer cells significantly enhances cell proliferation and invasion in vitro and promotes tumor growth and lung metastasis in vivo. Combining bioinformatics prediction and biochemical analyses, we showed that ADAM9 and ROS1 are direct downstream targets of miR-33a. These findings identified miR-33a as a negative regulator of breast cancer cell proliferation and metastasis.
基金supported by the Science and Technology Project of Jiangxi Provincial Administration of Traditional Chinese Medicine(Grant Number:2022A359).
文摘Background:Diabetes retinopathy(DR)is a complication of diabetes that affects patients’vision.Previous studies have found blueberry anthocyanins extract(BAE)can inhibit the progression of DR,but its mechanism is not completely clear.Methods:To study the role of BAE in diabetes retinopathy,we treated human retinal endothelial cells(HRCECs)with 30 mM high glucose to simulate the microenvironment of diabetes retinopathy and used BAE to intervene the in vitro high glucose-induced retinopathy model.HRCEC cell viability and apoptosis rates were examined by Cell Counting Kit 8(CCK-8)assay and flow cytometry assay.The binding sites between miR-33 and glucocorticoid-induced transcript 1(GLCCI1)were assessed by luciferase reporter assay.Retinal neovascularization and oxidative stress contribute to diabetic retinopathy.The tubule formation assay was applied to detect the retinal neovascularization.The oxidative stress in the HRCECs was manifested by the reactive oxygen species(ROS)level,the malondialdehyde(MDA)level,and the superoxide dismutase(SOD)activity.Results:Compared with HRCECs cells cultured under normal conditions,high glucose(HG)can induce oxidative stress in HRCRCs,specifically manifested in the increase of ROS and MDA levels,and the decrease of SOD activity.BAE relieved the tubule formation in n the HRCEC.BAE also relieved the ROS and MDA levels and increased the SOD activity.Luciferase reporter assay revealed that GLCCI1 is a target molecule downstream of miR-33.In HRCEC,BAE significantly inhibited the expression of miR-33 induced by HG.miR-33 mimic inhibited the BAE’s effects on oxidative stress and angiogenesis in an in vitro high glucose-induced retinopathy model.Conclusion:BAE alleviated the oxidative stress and microangiogenesis of HRCEC by regulating the miR-33/GLCCI1 axis.