In this paper, which serves as a continuation of earlier work, we generalize the idea of inequalities in metric spaces and use them to demonstrate that the incomplete metric space can be used to obtain a Banach space.
设f:X→Y是连续的满映射. f称为序列覆盖映射,若{y})是Y中的收敛序列,则存在X中的收敛序列{xn},使得每一xn∈f-1(yn);f称为1序列覆盖映射,若对于每-y∈Y,存在x∈f-1(y),使得如果{yn}是Y中收敛于点y的序列,则有X中收敛于点x的序列{xn},...设f:X→Y是连续的满映射. f称为序列覆盖映射,若{y})是Y中的收敛序列,则存在X中的收敛序列{xn},使得每一xn∈f-1(yn);f称为1序列覆盖映射,若对于每-y∈Y,存在x∈f-1(y),使得如果{yn}是Y中收敛于点y的序列,则有X中收敛于点x的序列{xn},使得每一xn∈f-1(yn).本文研究度量空间序列覆盖的闭映射之构造,否定地回答了Topology and its Applications上提出的一个问题.展开更多
文摘In this paper, which serves as a continuation of earlier work, we generalize the idea of inequalities in metric spaces and use them to demonstrate that the incomplete metric space can be used to obtain a Banach space.
文摘设f:X→Y是连续的满映射. f称为序列覆盖映射,若{y})是Y中的收敛序列,则存在X中的收敛序列{xn},使得每一xn∈f-1(yn);f称为1序列覆盖映射,若对于每-y∈Y,存在x∈f-1(y),使得如果{yn}是Y中收敛于点y的序列,则有X中收敛于点x的序列{xn},使得每一xn∈f-1(yn).本文研究度量空间序列覆盖的闭映射之构造,否定地回答了Topology and its Applications上提出的一个问题.