Accurate prediction of the evolution of particle size distribution is critical to determining the dynamic flow structure of a disperse phase system.A population balance equation(PBE),a non-linear hyperbolic equation o...Accurate prediction of the evolution of particle size distribution is critical to determining the dynamic flow structure of a disperse phase system.A population balance equation(PBE),a non-linear hyperbolic equation of the number density function,is usually employed to describe the micro-behavior(aggregation,breakage,growth,etc.) of a disperse phase and its effect on particle size distribution.Numerical solution is the only choice in most cases.In this paper,three different numerical methods(direct discretization methods,Monte Carlo methods,and moment methods) for the solution of a PBE are evaluated with regard to their ease of implementation,computational load and numerical accuracy.Special attention is paid to the relatively new and superior moment methods including quadrature method of moments(QMOM),direct quadrature method of moments(DQMOM),modified quadrature method of moments(M-QMOM),adaptive direct quadrature method of moments(ADQMOM),fixed pivot quadrature method of moments(FPQMOM),moving particle ensemble method(MPEM) and local fixed pivot quadrature method of moments(LFPQMOM).The prospects of these methods are discussed in the final section,based on their individual merits and current state of development of the field.展开更多
The aim of this work is to improve the minimum time of null controllability of the 1D heat equation by using the notion of strategic zone actuators. In fact, motivated by the work of Khodja on the null controllability...The aim of this work is to improve the minimum time of null controllability of the 1D heat equation by using the notion of strategic zone actuators. In fact, motivated by the work of Khodja on the null controllability of the heat equation and of El Jai on the controllability by the use of strategic zone actuators, we managed, in this work, to improve the minimal time of null controllability to the 1D heat equation. However, the restrictions and difficulties to establish the inequality of coercivity of the parabolic operator, require to seek other methods of internal control. Thus in this paper, a mixed method combining the method of moments and the notion of strategic profile was used to find a better minimal time of null controllability of the 1D heat equation.展开更多
This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)En...This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)Ent measure for fixed moment vector function in order to obtain the special functional with maximum values of Max(F)Ent measure and secondary optimization of mentioned functional with respect to moment vector functions. Distributions, in other words sets of successive values of estimated membership function closest to (furthest from) the given membership function in the sense of Max(F)Ent measure, obtained by mentioned methods are defined as (MinMax(F)Ent)m which is closest to a given membership function and (MaxMax(F)Ent)m which is furthest from a given membership function. The aim of this study consists of applying MinMax(F)EntM and MaxMax(F)EntM on given wind speed data. Obtained results are realized by using MATLAB programme. The performances of distributions (MinMax(F)En0m and (MaxMax(F)Ent)m generated by using Generalized Maximum Fuzzy Entropy Methods are established by Chi-Square, Root Mean Square Error criterias and Max(F)Ent measure.展开更多
基金Supported by the National Basic Research Program of China (Grant No. 2004CB720208)the National Natural Science Foundation of China (Grant Nos. 40675011 & 10872159)the Key Laboratory of Mechanics on Disaster and Environment in Western China
文摘Accurate prediction of the evolution of particle size distribution is critical to determining the dynamic flow structure of a disperse phase system.A population balance equation(PBE),a non-linear hyperbolic equation of the number density function,is usually employed to describe the micro-behavior(aggregation,breakage,growth,etc.) of a disperse phase and its effect on particle size distribution.Numerical solution is the only choice in most cases.In this paper,three different numerical methods(direct discretization methods,Monte Carlo methods,and moment methods) for the solution of a PBE are evaluated with regard to their ease of implementation,computational load and numerical accuracy.Special attention is paid to the relatively new and superior moment methods including quadrature method of moments(QMOM),direct quadrature method of moments(DQMOM),modified quadrature method of moments(M-QMOM),adaptive direct quadrature method of moments(ADQMOM),fixed pivot quadrature method of moments(FPQMOM),moving particle ensemble method(MPEM) and local fixed pivot quadrature method of moments(LFPQMOM).The prospects of these methods are discussed in the final section,based on their individual merits and current state of development of the field.
基金This paper is supported bytwoprojects(2006),Philosophical and social science project ofGuangdongProvince(06E18)The eleventh five-year-programming project of philosophical and social science development ofGuangzhou(06- Z4- 6)
文摘The aim of this work is to improve the minimum time of null controllability of the 1D heat equation by using the notion of strategic zone actuators. In fact, motivated by the work of Khodja on the null controllability of the heat equation and of El Jai on the controllability by the use of strategic zone actuators, we managed, in this work, to improve the minimal time of null controllability to the 1D heat equation. However, the restrictions and difficulties to establish the inequality of coercivity of the parabolic operator, require to seek other methods of internal control. Thus in this paper, a mixed method combining the method of moments and the notion of strategic profile was used to find a better minimal time of null controllability of the 1D heat equation.
文摘This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)Ent measure for fixed moment vector function in order to obtain the special functional with maximum values of Max(F)Ent measure and secondary optimization of mentioned functional with respect to moment vector functions. Distributions, in other words sets of successive values of estimated membership function closest to (furthest from) the given membership function in the sense of Max(F)Ent measure, obtained by mentioned methods are defined as (MinMax(F)Ent)m which is closest to a given membership function and (MaxMax(F)Ent)m which is furthest from a given membership function. The aim of this study consists of applying MinMax(F)EntM and MaxMax(F)EntM on given wind speed data. Obtained results are realized by using MATLAB programme. The performances of distributions (MinMax(F)En0m and (MaxMax(F)Ent)m generated by using Generalized Maximum Fuzzy Entropy Methods are established by Chi-Square, Root Mean Square Error criterias and Max(F)Ent measure.