期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Monolithic Convex Limiting for Legendre-Gauss-Lobatto Discontinuous Galerkin Spectral-Element Methods
1
作者 Andrés M.Rueda-Ramírez Benjamin Bolm +1 位作者 Dmitri Kuzmin Gregor J.Gassner 《Communications on Applied Mathematics and Computation》 EI 2024年第3期1860-1898,共39页
We extend the monolithic convex limiting(MCL)methodology to nodal discontinuous Galerkin spectral-element methods(DGSEMS).The use of Legendre-Gauss-Lobatto(LGL)quadrature endows collocated DGSEM space discretizations ... We extend the monolithic convex limiting(MCL)methodology to nodal discontinuous Galerkin spectral-element methods(DGSEMS).The use of Legendre-Gauss-Lobatto(LGL)quadrature endows collocated DGSEM space discretizations of nonlinear hyperbolic problems with properties that greatly simplify the design of invariant domain-preserving high-resolution schemes.Compared to many other continuous and discontinuous Galerkin method variants,a particular advantage of the LGL spectral operator is the availability of a natural decomposition into a compatible subcellflux discretization.Representing a highorder spatial semi-discretization in terms of intermediate states,we performflux limiting in a manner that keeps these states and the results of Runge-Kutta stages in convex invariant domains.In addition,local bounds may be imposed on scalar quantities of interest.In contrast to limiting approaches based on predictor-corrector algorithms,our MCL procedure for LGL-DGSEM yields nonlinearflux approximations that are independent of the time-step size and can be further modified to enforce entropy stability.To demonstrate the robustness of MCL/DGSEM schemes for the compressible Euler equations,we run simulations for challenging setups featuring strong shocks,steep density gradients,and vortex dominatedflows. 展开更多
关键词 Structure-preserving schemes Subcellflux limiting Monolithic convex limiting(MCL) Discontinuous Galerkin spectral-element methods(dgsems) Legendre-Gauss-Lobatto(LGL)nodes
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部