The use of X-ray microtomographic (XMT) methods in analysing particulate systems has expanded rapidly in recent years with the availability of affordable desk-top apparatus. This review presents a summary of the maj...The use of X-ray microtomographic (XMT) methods in analysing particulate systems has expanded rapidly in recent years with the availability of affordable desk-top apparatus. This review presents a summary of the major applications in which computer simulations are explicitly coupled with XMT in the area of granular and porous materials. We envisage two main ways of establishing the coupling between both techniques, based on the transference or exchange of information by using physical or geometrical parameters (i.e. a parametric link through fitting to a process model) or through the direct use of3D XMT digital images (i.e. comparing image pixels and features directly). Examples of coupled applications are shown for the study of transport properties of rocks, particle packing, mechanical loading and sintering. Often, the link between XMT and computer simulations is based on visual comparisons and we conclude that the use of quantitative parameters such as the number of interparticle contacts, force networks or granule shape to link both techniques is still underrepresented in the literature. Strategies to provide a more robust and quantitative approach to optimise the information obtained from such tomography analyses are proposed. 2010 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.展开更多
基金support of this work (Grant EP/D031257/1)and the contribution of illustrations from Prof. U. Tuzun (University of Surrey), Prof. C. Lin(University of Utah) and Dr C. Selomulya (Monash University)
文摘The use of X-ray microtomographic (XMT) methods in analysing particulate systems has expanded rapidly in recent years with the availability of affordable desk-top apparatus. This review presents a summary of the major applications in which computer simulations are explicitly coupled with XMT in the area of granular and porous materials. We envisage two main ways of establishing the coupling between both techniques, based on the transference or exchange of information by using physical or geometrical parameters (i.e. a parametric link through fitting to a process model) or through the direct use of3D XMT digital images (i.e. comparing image pixels and features directly). Examples of coupled applications are shown for the study of transport properties of rocks, particle packing, mechanical loading and sintering. Often, the link between XMT and computer simulations is based on visual comparisons and we conclude that the use of quantitative parameters such as the number of interparticle contacts, force networks or granule shape to link both techniques is still underrepresented in the literature. Strategies to provide a more robust and quantitative approach to optimise the information obtained from such tomography analyses are proposed. 2010 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.