The present paper gives a numerical simulation of hot sawing process by using elastic- plastic finite element method. The simulation is carried out for the moment from the beginning of deformation to the local yield i...The present paper gives a numerical simulation of hot sawing process by using elastic- plastic finite element method. The simulation is carried out for the moment from the beginning of deformation to the local yield in work piece. In order to treat the work hardening on deformation resistance, a correction of stress based on deformation rate is taken into consideration. The calculation results shows, there are two stress peaks both on the lower and upper sides ahead of the tooth tip during the elastic press stage, in which the displacement of tooth is below 0.735*10-6 cm. Following the push of saw tooth and rise of saw load, metal at the corner of filing reaches the yield point and a local plastic area appears,where metal shapes new filing part towards the free surface under the extrusion forces. Meanwhile the stress peaks ahead of tooth tip initial also yield regions. The displacement of saw tooth is between 0.735*10-6cm and 1.274*10-6cm in this stage. With the further push of the saw tooth, metal bounded to tooth tip is torn under the combination of tensile and sheer stress. The slide of metal and its local plastic flow form the extension of filing. Then the saw load rises no longer and static sawing procedure continues.展开更多
文摘The present paper gives a numerical simulation of hot sawing process by using elastic- plastic finite element method. The simulation is carried out for the moment from the beginning of deformation to the local yield in work piece. In order to treat the work hardening on deformation resistance, a correction of stress based on deformation rate is taken into consideration. The calculation results shows, there are two stress peaks both on the lower and upper sides ahead of the tooth tip during the elastic press stage, in which the displacement of tooth is below 0.735*10-6 cm. Following the push of saw tooth and rise of saw load, metal at the corner of filing reaches the yield point and a local plastic area appears,where metal shapes new filing part towards the free surface under the extrusion forces. Meanwhile the stress peaks ahead of tooth tip initial also yield regions. The displacement of saw tooth is between 0.735*10-6cm and 1.274*10-6cm in this stage. With the further push of the saw tooth, metal bounded to tooth tip is torn under the combination of tensile and sheer stress. The slide of metal and its local plastic flow form the extension of filing. Then the saw load rises no longer and static sawing procedure continues.