Natural gas hydrate, as a potential energy resource, deposits in permafrost and marine sediment with large quantities. The current exploitation methods include depressurization, thermal stimulation, and inhibitor inje...Natural gas hydrate, as a potential energy resource, deposits in permafrost and marine sediment with large quantities. The current exploitation methods include depressurization, thermal stimulation, and inhibitor injection. However, many issues have to be resolved before the commercial production. In the present study, a 2-D axisymmetric simulator for gas production from hydrate reservoirs is developed. The simulator includes equations of conductive and convective heat transfer, kinetic of hydrate decomposition, and multiphase flow. These equations are discretized based on the finite difference method and are solved with the fully implicit simultaneous solution method. The process of laboratory-scale hydrate decomposition by depressurization is simulated. For different surrounding temperatures and outlet pressures, time evolutions of gas and water generations during hydrate dissociation are evaluated, and variations of temperature, pressure, and multiphase fluid flow conditions are analyzed. The results suggest that the rate of heat transfer plays an important role in the process. Furthermore, high surrounding temperature and low outlet valve pressure may increase the rate of hydrate dissociation with insignificant impact on final cumulative gas volume.展开更多
For the exploration of gas hydrate resources by measuring the dissolved methane concentration in seawater, a continuous-wave cavity ringdown spectroscopy (CW-CRDS) experimental setup was constructed for trace methane ...For the exploration of gas hydrate resources by measuring the dissolved methane concentration in seawater, a continuous-wave cavity ringdown spectroscopy (CW-CRDS) experimental setup was constructed for trace methane detection. A current-modulation method, rather than a cavity-modulation method using an optical switch and a piezoelectric transducer, was employed to realize the cavity excitation and shutoff. Such a current-modulation method enabled the improvement of the experimental setup construction and stability, and the system size and stability are critical for a sensor to be deployed underwater. Ringdown data acquisition and processing were performed, followed by an evaluation of the experimental setup stability and sensitivity. The obtained results demonstrate that great errors are introduced when a large fitting window is selected if the analog-to-digital converter has an insufficient resolution. The ringdown spectrum of methane corresponding to the 2 nu(3) band R(4) branch was captured, and the methane concentration in lab air was determined to be 2.06 ppm. Further experiments for evaluating the quantitative ability of this CW-CRDS experimental setup are underway from which a high-sensitivity methane sensor that can be combined with a degassing system is expected.展开更多
基金supported by the National High Technology Research and Development Program of China(863 Program, Grant No.2006AA09A209-5)the National Natural Science Foundation of China (Key Program,Grant No.50736001)the Major Research Project of Ministry of Education of China (Grant No.306005)
文摘Natural gas hydrate, as a potential energy resource, deposits in permafrost and marine sediment with large quantities. The current exploitation methods include depressurization, thermal stimulation, and inhibitor injection. However, many issues have to be resolved before the commercial production. In the present study, a 2-D axisymmetric simulator for gas production from hydrate reservoirs is developed. The simulator includes equations of conductive and convective heat transfer, kinetic of hydrate decomposition, and multiphase flow. These equations are discretized based on the finite difference method and are solved with the fully implicit simultaneous solution method. The process of laboratory-scale hydrate decomposition by depressurization is simulated. For different surrounding temperatures and outlet pressures, time evolutions of gas and water generations during hydrate dissociation are evaluated, and variations of temperature, pressure, and multiphase fluid flow conditions are analyzed. The results suggest that the rate of heat transfer plays an important role in the process. Furthermore, high surrounding temperature and low outlet valve pressure may increase the rate of hydrate dissociation with insignificant impact on final cumulative gas volume.
文摘For the exploration of gas hydrate resources by measuring the dissolved methane concentration in seawater, a continuous-wave cavity ringdown spectroscopy (CW-CRDS) experimental setup was constructed for trace methane detection. A current-modulation method, rather than a cavity-modulation method using an optical switch and a piezoelectric transducer, was employed to realize the cavity excitation and shutoff. Such a current-modulation method enabled the improvement of the experimental setup construction and stability, and the system size and stability are critical for a sensor to be deployed underwater. Ringdown data acquisition and processing were performed, followed by an evaluation of the experimental setup stability and sensitivity. The obtained results demonstrate that great errors are introduced when a large fitting window is selected if the analog-to-digital converter has an insufficient resolution. The ringdown spectrum of methane corresponding to the 2 nu(3) band R(4) branch was captured, and the methane concentration in lab air was determined to be 2.06 ppm. Further experiments for evaluating the quantitative ability of this CW-CRDS experimental setup are underway from which a high-sensitivity methane sensor that can be combined with a degassing system is expected.
基金the National Natural Science Foundation of China(Grant No.12072347)the Excellent Training Plan of the Institute of Mechanics,Chinese Academy of Sciences,and CNPC New Energy Key Project(Grant No.2021DJ4902).