To analyze the effect of basic variable on failure probability in reliability analysis,a moment-independent importance measure of the basic random variable is proposed,and its properties are analyzed and verified.Base...To analyze the effect of basic variable on failure probability in reliability analysis,a moment-independent importance measure of the basic random variable is proposed,and its properties are analyzed and verified.Based on this work,the importance measure of the basic variable on the failure probability is compared with that on the distribution density of the response.By use of the probability density evolution method,a solution is established to solve two importance measures,which can efficiently avoid the difficulty in solving the importance measures.Some numerical examples and engineering examples are used to demonstrate the proposed importance measure on the failure probability and that on the distribution density of the response.The results show that the proposed importance measure can effectively describe the effect of the basic variable on the failure probability from the distribution density of the basic variable.Additionally,the results show that the established solution on the probability density evolution is efficient for the importance measures.展开更多
The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and nea...The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals(moment method).The wave displacement fields are computed by the residual method for the cases of elliptic,circular,rounded-rectangular and flat-elliptic canyons,The analysis demonstrates that the resulting surface displacement depends,as in similar previous analyses,on several factors including,but not limited,to the angle of the wedge,the geometry of the vertex,the frequencies of the incident waves,the angles of incidence,and the material properties of the media.The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos NSFC1057211, 50875213)New Century Excellent Talents in University of China (Grant No NCET-05-0868)+2 种基金Aviation Science Foundation of China (Grant No 2007ZA53012)National High Technology Research and Development Program of China (Grant No 2007AA04Z401)the Important National Science & Technology Specific Projects (Grant No 2009ZX04014-015-03)
文摘To analyze the effect of basic variable on failure probability in reliability analysis,a moment-independent importance measure of the basic random variable is proposed,and its properties are analyzed and verified.Based on this work,the importance measure of the basic variable on the failure probability is compared with that on the distribution density of the response.By use of the probability density evolution method,a solution is established to solve two importance measures,which can efficiently avoid the difficulty in solving the importance measures.Some numerical examples and engineering examples are used to demonstrate the proposed importance measure on the failure probability and that on the distribution density of the response.The results show that the proposed importance measure can effectively describe the effect of the basic variable on the failure probability from the distribution density of the basic variable.Additionally,the results show that the established solution on the probability density evolution is efficient for the importance measures.
文摘The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals(moment method).The wave displacement fields are computed by the residual method for the cases of elliptic,circular,rounded-rectangular and flat-elliptic canyons,The analysis demonstrates that the resulting surface displacement depends,as in similar previous analyses,on several factors including,but not limited,to the angle of the wedge,the geometry of the vertex,the frequencies of the incident waves,the angles of incidence,and the material properties of the media.The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.