期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于TCN-LSTM和气象相似日集的电网短期负荷预测方法 被引量:33
1
作者 刘辉 凌宁青 +1 位作者 罗志强 孙志媛 《智慧电力》 北大核心 2022年第8期30-37,共8页
为充分挖掘不同气象因素的相似日信息和输入特征蕴含的信息以提升负荷预测精度,提出一种基于时间卷积网络和长短期记忆网络组合(TCN-LSTM)和气象相似日集的电网短期负荷预测方法。首先通过Pearson系数和最大信息系数,选出与负荷强相关... 为充分挖掘不同气象因素的相似日信息和输入特征蕴含的信息以提升负荷预测精度,提出一种基于时间卷积网络和长短期记忆网络组合(TCN-LSTM)和气象相似日集的电网短期负荷预测方法。首先通过Pearson系数和最大信息系数,选出与负荷强相关的气象因素;然后根据该气象因素,选取最佳相似日组成气象相似日集,以气象相似日集负荷、历史负荷、气象因素和时间因素作为预测模型的输入特征;最后,搭建TCN-LSTM预测模型,用TCN进行特征提取后,再用LSTM网络完成短期负荷预测。以中国某地区的实际历史数据进行仿真验证,结果表明所提预测方法可有效提升负荷预测精度。 展开更多
关键词 气象相似日集 TCN LSTM网络 电网短期负荷预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部