期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于TCN-LSTM和气象相似日集的电网短期负荷预测方法
被引量:
33
1
作者
刘辉
凌宁青
+1 位作者
罗志强
孙志媛
《智慧电力》
北大核心
2022年第8期30-37,共8页
为充分挖掘不同气象因素的相似日信息和输入特征蕴含的信息以提升负荷预测精度,提出一种基于时间卷积网络和长短期记忆网络组合(TCN-LSTM)和气象相似日集的电网短期负荷预测方法。首先通过Pearson系数和最大信息系数,选出与负荷强相关...
为充分挖掘不同气象因素的相似日信息和输入特征蕴含的信息以提升负荷预测精度,提出一种基于时间卷积网络和长短期记忆网络组合(TCN-LSTM)和气象相似日集的电网短期负荷预测方法。首先通过Pearson系数和最大信息系数,选出与负荷强相关的气象因素;然后根据该气象因素,选取最佳相似日组成气象相似日集,以气象相似日集负荷、历史负荷、气象因素和时间因素作为预测模型的输入特征;最后,搭建TCN-LSTM预测模型,用TCN进行特征提取后,再用LSTM网络完成短期负荷预测。以中国某地区的实际历史数据进行仿真验证,结果表明所提预测方法可有效提升负荷预测精度。
展开更多
关键词
气象相似日集
TCN
LSTM网络
电网短期负荷预测
下载PDF
职称材料
题名
基于TCN-LSTM和气象相似日集的电网短期负荷预测方法
被引量:
33
1
作者
刘辉
凌宁青
罗志强
孙志媛
机构
广西大学电气工程学院
广西电网有限责任公司电力科学研究院
出处
《智慧电力》
北大核心
2022年第8期30-37,共8页
基金
国家重点研发计划资助项目(2019YFE0118000)
广西自然科学杰出青年基金(2018GXNSFFA281006)。
文摘
为充分挖掘不同气象因素的相似日信息和输入特征蕴含的信息以提升负荷预测精度,提出一种基于时间卷积网络和长短期记忆网络组合(TCN-LSTM)和气象相似日集的电网短期负荷预测方法。首先通过Pearson系数和最大信息系数,选出与负荷强相关的气象因素;然后根据该气象因素,选取最佳相似日组成气象相似日集,以气象相似日集负荷、历史负荷、气象因素和时间因素作为预测模型的输入特征;最后,搭建TCN-LSTM预测模型,用TCN进行特征提取后,再用LSTM网络完成短期负荷预测。以中国某地区的实际历史数据进行仿真验证,结果表明所提预测方法可有效提升负荷预测精度。
关键词
气象相似日集
TCN
LSTM网络
电网短期负荷预测
Keywords
meteorological
similarity
day
sets
TCN
LSTM
network
power
grid
short-term
load
forecasting
分类号
TM714 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于TCN-LSTM和气象相似日集的电网短期负荷预测方法
刘辉
凌宁青
罗志强
孙志媛
《智慧电力》
北大核心
2022
33
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部