The retrospective numerical scheme(RNS)is a numerical computation scheme de- signed for multiple past value problems of the initial value in mathematics and considering the self- memory property of the system in physi...The retrospective numerical scheme(RNS)is a numerical computation scheme de- signed for multiple past value problems of the initial value in mathematics and considering the self- memory property of the system in physics.This paper briefly presents the historical background of RNS,elaborates the relation of the scheme with other difference schemes and other meteorological prediction methods,and introduces the application of RNS to the regional climatic self-memory model, simplified climate model,barotropic model,spectral model,and mesoscale model.At last,the paper sums up and points out the application perspective of the scheme and the direction for the future study.展开更多
It is not only meteorological problems for the medium-range numerical weather prediction (NWP) research to be in operation,but also engineering and technological problems.Here we gener- ally described the results of r...It is not only meteorological problems for the medium-range numerical weather prediction (NWP) research to be in operation,but also engineering and technological problems.Here we gener- ally described the results of research,engineering construction,operation information and testing,in the course of set-up of medium-range NWP operation system in the China National Meteorological Center.展开更多
After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve we...After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve weather observations,quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction(NWP) models.In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation.展开更多
基金The project supported by the Research Program of the Climatic System Model of China,the National Natural Science Foundation of China (40275031 and 40231006) and the National Key Program for Developing Basic Sciences (1999043408)
文摘The retrospective numerical scheme(RNS)is a numerical computation scheme de- signed for multiple past value problems of the initial value in mathematics and considering the self- memory property of the system in physics.This paper briefly presents the historical background of RNS,elaborates the relation of the scheme with other difference schemes and other meteorological prediction methods,and introduces the application of RNS to the regional climatic self-memory model, simplified climate model,barotropic model,spectral model,and mesoscale model.At last,the paper sums up and points out the application perspective of the scheme and the direction for the future study.
文摘It is not only meteorological problems for the medium-range numerical weather prediction (NWP) research to be in operation,but also engineering and technological problems.Here we gener- ally described the results of research,engineering construction,operation information and testing,in the course of set-up of medium-range NWP operation system in the China National Meteorological Center.
基金supported by the NOAA (Grant Nos. NA16AOR4320115 and NA11OAR4320072)NSF (Grant No. AGS-1341878)
文摘After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve weather observations,quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction(NWP) models.In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation.