Ferronickel enrichment and extraction from nickel laterite ore were studied through reduction and magnetic separation. Reduction experiments were performed using hydrogen and carbon monoxide as reductants at different...Ferronickel enrichment and extraction from nickel laterite ore were studied through reduction and magnetic separation. Reduction experiments were performed using hydrogen and carbon monoxide as reductants at different temperatures (700-1000℃). Magnetic separa- tion of the reduced products was conducted using a SLon-100 cycle pulsating magnetic separator (1.2 T). Composition analysis indicates that the nickel laterite ore contains a total iron content of 22.50wt% and a total nickel content of 1.91wt%. Its mineral composition mainly con- sists of serpentine, hortonolite, and goethite. During the reduction process, the grade of nickel and iron in the products increases with in- creasing reduction temperature. Although a higher temperature is more favorable for reduction, the temperature exceeding 1000℃ results in sintering of the products, preventing magnetic separation. After magnetic separation, the maximum total nickel and iron concentrations are 5.43wt% and 56.86wt%, and the corresponding recovery rates are 84.38% and 53.76%, respectively.展开更多
HSLA steels need extremely low levels of tramp elements like P,S,H and O t.During tapping the steel is deoxidized with aluminum and in the secondary metallurgy sulphur (【 10 ppm) and hydrogen (【 1 ppm) are extracted...HSLA steels need extremely low levels of tramp elements like P,S,H and O t.During tapping the steel is deoxidized with aluminum and in the secondary metallurgy sulphur (【 10 ppm) and hydrogen (【 1 ppm) are extracted.After tank degassing the steel is strongly Ca-treated by wire feeding to form CaS instead of MnS.Non-metallic inclusions in the steel and centre segregation with MnS are sinks for hydrogen which result in HIC (Hydrogen Induced Cracking).Therefore these steels ask for excellent oxide cleanness and S-contents of 【 10 ppm.Macro inclusions of 】 50 μm are harmful for the product.These large inclusions are seldom and difficult to be detected.Small inclusions of 【 15 μm do no harm to the product.The origin of non-metallic inclusions is,roughly spoken,one third each of de-oxidation-/reoxidation products,refractory and casting powder.Slag carry-over is mainly avoided by sensitive electronic devices.Slag covers and shrouding systems of the steel stream during the transfer of metal between ladle,tundish and mold are effective to avoid reoxidation.Systems to control the flow of steel in tundish and mold favor the floatation of inclusions and their even distribution in the strand.展开更多
文摘Ferronickel enrichment and extraction from nickel laterite ore were studied through reduction and magnetic separation. Reduction experiments were performed using hydrogen and carbon monoxide as reductants at different temperatures (700-1000℃). Magnetic separa- tion of the reduced products was conducted using a SLon-100 cycle pulsating magnetic separator (1.2 T). Composition analysis indicates that the nickel laterite ore contains a total iron content of 22.50wt% and a total nickel content of 1.91wt%. Its mineral composition mainly con- sists of serpentine, hortonolite, and goethite. During the reduction process, the grade of nickel and iron in the products increases with in- creasing reduction temperature. Although a higher temperature is more favorable for reduction, the temperature exceeding 1000℃ results in sintering of the products, preventing magnetic separation. After magnetic separation, the maximum total nickel and iron concentrations are 5.43wt% and 56.86wt%, and the corresponding recovery rates are 84.38% and 53.76%, respectively.
文摘HSLA steels need extremely low levels of tramp elements like P,S,H and O t.During tapping the steel is deoxidized with aluminum and in the secondary metallurgy sulphur (【 10 ppm) and hydrogen (【 1 ppm) are extracted.After tank degassing the steel is strongly Ca-treated by wire feeding to form CaS instead of MnS.Non-metallic inclusions in the steel and centre segregation with MnS are sinks for hydrogen which result in HIC (Hydrogen Induced Cracking).Therefore these steels ask for excellent oxide cleanness and S-contents of 【 10 ppm.Macro inclusions of 】 50 μm are harmful for the product.These large inclusions are seldom and difficult to be detected.Small inclusions of 【 15 μm do no harm to the product.The origin of non-metallic inclusions is,roughly spoken,one third each of de-oxidation-/reoxidation products,refractory and casting powder.Slag carry-over is mainly avoided by sensitive electronic devices.Slag covers and shrouding systems of the steel stream during the transfer of metal between ladle,tundish and mold are effective to avoid reoxidation.Systems to control the flow of steel in tundish and mold favor the floatation of inclusions and their even distribution in the strand.