Calcined magnesite is a binding additive and an MgO-bearing flux for pellets production. The effects of cal- cination temperature and time on the characteristics of calcined magnesite were investigated. Experimental r...Calcined magnesite is a binding additive and an MgO-bearing flux for pellets production. The effects of cal- cination temperature and time on the characteristics of calcined magnesite were investigated. Experimental results in dicated that the best calcination condition was 850℃ and 1h. Under this condition, the hydration activity of the eal cined magnesite was 80.56%, and the average diameter of crystal grain D, specific surface area S and the medium particle size D50 were 25.4 nm, 45.40 m2/g and 3.41μm, respectively. This kind of calcined magnesite was a good binding additive for pellets production. At the same proportion of calcined magnesite, the effects of activities of cal cined magnesite on metallurgical properties of green pellet and indurated pellet showed that calcined magnesite with high activity could improve the dropping strength and compressive strength of green pellet and enhance the burst temperature of green pellet; however, the effects of activity on compressive strength, low-temperature reduction degradation index, reduction swelling index and reduction index of indurated pellet were not obvious.展开更多
用化学沉淀法制备β-磷酸钙/羟基磷灰石双向陶瓷(β-TCP/HA)粉末。采用粉末冶金法,以(HA/β-TCP)粉末和Ti粉末为原料,经1050℃真空烧结60 min制备出含不同质量分数钛粉的(HA/β-TCP)/Ti复合材料:(β-TCP/HA)/60wt%Ti、(β-TCP/HA)/70wt...用化学沉淀法制备β-磷酸钙/羟基磷灰石双向陶瓷(β-TCP/HA)粉末。采用粉末冶金法,以(HA/β-TCP)粉末和Ti粉末为原料,经1050℃真空烧结60 min制备出含不同质量分数钛粉的(HA/β-TCP)/Ti复合材料:(β-TCP/HA)/60wt%Ti、(β-TCP/HA)/70wt%Ti、(β-TCP/HA)/80wt%Ti。用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对复合材料进行了组织结构和物相成分表征,并采用维氏显微硬度计测试了复合材料的显微硬度。采用模拟体液浸泡(SPF)进行体外生物活性表征,结果表明:复合材料的物相主要为α-Ti、TiO_2、Ca5(PO4)3(OH)、β-Ca3(PO4)2和Ca Ti O3;块状陶瓷相沿富Ti相等形成的网状结构的孔隙中分布。(β-TCP/HA)/60wt%Ti复合材料中Ca5(PO4)3(OH)分解程度最小,显微硬度为HV539,最接近人体骨骼的硬度。经14天SPF溶液浸泡后,Ca5(PO4)3(OH)的衍射峰沿(211)晶面具有明显的择优取向,材料表面密布结晶度良好的棒状Ca5(PO4)3(OH)晶体。展开更多
The activity of FetO is very important in ironmaking and steelmaking process. In order to predict the activ- ity of Fe, O and optimize the operation conditions in ironmaking and steelmaking process, by application of ...The activity of FetO is very important in ironmaking and steelmaking process. In order to predict the activ- ity of Fe, O and optimize the operation conditions in ironmaking and steelmaking process, by application of regular so lution model in molten slag systems, FeO-Fe2 O3-SIO2 ternary system, FeO-Fe2 O3-SiO2-CaO and FeO-Fe2 O3-SiO2-NiO quaternary systems have been studied by the chemical equilibrium between H2/H20 gas mixture and liquid slag con tained in solid iron. The values of interaction energy between cations concerning steelmaking slags have been deter- mined by application of ferric-ferrous iron equilibrium and iron-ferric iron equilibrium. And then the activity of Fe, O can be calculated. The results show that the relative error is 3.9% in FeO-Fe203-SiO2 system and 18% in FeO- Fe203-SiO2 CaO system. The prediction of activities of FetO in the systems are in good agreement with the measure- ments and the regular solution model is valid for predicting the activity of FetO in complex molten slags systems. The activity of Fe, O in FeO-Fe20a-NiO system have not been tested presently, and the calculated result can not be assessed.展开更多
基金Item Sponsored by National Natural Science Foundation of China(51074206,51074040)
文摘Calcined magnesite is a binding additive and an MgO-bearing flux for pellets production. The effects of cal- cination temperature and time on the characteristics of calcined magnesite were investigated. Experimental results in dicated that the best calcination condition was 850℃ and 1h. Under this condition, the hydration activity of the eal cined magnesite was 80.56%, and the average diameter of crystal grain D, specific surface area S and the medium particle size D50 were 25.4 nm, 45.40 m2/g and 3.41μm, respectively. This kind of calcined magnesite was a good binding additive for pellets production. At the same proportion of calcined magnesite, the effects of activities of cal cined magnesite on metallurgical properties of green pellet and indurated pellet showed that calcined magnesite with high activity could improve the dropping strength and compressive strength of green pellet and enhance the burst temperature of green pellet; however, the effects of activity on compressive strength, low-temperature reduction degradation index, reduction swelling index and reduction index of indurated pellet were not obvious.
文摘用化学沉淀法制备β-磷酸钙/羟基磷灰石双向陶瓷(β-TCP/HA)粉末。采用粉末冶金法,以(HA/β-TCP)粉末和Ti粉末为原料,经1050℃真空烧结60 min制备出含不同质量分数钛粉的(HA/β-TCP)/Ti复合材料:(β-TCP/HA)/60wt%Ti、(β-TCP/HA)/70wt%Ti、(β-TCP/HA)/80wt%Ti。用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对复合材料进行了组织结构和物相成分表征,并采用维氏显微硬度计测试了复合材料的显微硬度。采用模拟体液浸泡(SPF)进行体外生物活性表征,结果表明:复合材料的物相主要为α-Ti、TiO_2、Ca5(PO4)3(OH)、β-Ca3(PO4)2和Ca Ti O3;块状陶瓷相沿富Ti相等形成的网状结构的孔隙中分布。(β-TCP/HA)/60wt%Ti复合材料中Ca5(PO4)3(OH)分解程度最小,显微硬度为HV539,最接近人体骨骼的硬度。经14天SPF溶液浸泡后,Ca5(PO4)3(OH)的衍射峰沿(211)晶面具有明显的择优取向,材料表面密布结晶度良好的棒状Ca5(PO4)3(OH)晶体。
基金Sponsored by National Natural Science Foundation of China (50764006,50574045)Yunnan Basic Applied Research Foundation of China (2006E0021M)
文摘The activity of FetO is very important in ironmaking and steelmaking process. In order to predict the activ- ity of Fe, O and optimize the operation conditions in ironmaking and steelmaking process, by application of regular so lution model in molten slag systems, FeO-Fe2 O3-SIO2 ternary system, FeO-Fe2 O3-SiO2-CaO and FeO-Fe2 O3-SiO2-NiO quaternary systems have been studied by the chemical equilibrium between H2/H20 gas mixture and liquid slag con tained in solid iron. The values of interaction energy between cations concerning steelmaking slags have been deter- mined by application of ferric-ferrous iron equilibrium and iron-ferric iron equilibrium. And then the activity of Fe, O can be calculated. The results show that the relative error is 3.9% in FeO-Fe203-SiO2 system and 18% in FeO- Fe203-SiO2 CaO system. The prediction of activities of FetO in the systems are in good agreement with the measure- ments and the regular solution model is valid for predicting the activity of FetO in complex molten slags systems. The activity of Fe, O in FeO-Fe20a-NiO system have not been tested presently, and the calculated result can not be assessed.