In this paper the influences of the metal-gate and high-k/SiO 2 /Si stacked structure on the metal-oxide-semiconductor field-effect transistor(MOSFET) are investigated.The flat-band voltage is revised by considering...In this paper the influences of the metal-gate and high-k/SiO 2 /Si stacked structure on the metal-oxide-semiconductor field-effect transistor(MOSFET) are investigated.The flat-band voltage is revised by considering the influences of stacked structure and metal-semiconductor work function fluctuation.The two-dimensional Poisson's equation of potential distribution is presented.A threshold voltage analytical model for metal-gate/high-k/SiO 2 /Si stacked MOSFETs is developed by solving these Poisson's equations using the boundary conditions.The model is verified by a two-dimensional device simulator,which provides the basic design guidance for metal-gate/high-k/SiO 2 /Si stacked MOSFETs.展开更多
In this paper, we report the fabrication, electrical and physical characteristics of TiN/HfO2/Si MOS capacitors with erbium (Er) ion implantation. It is demonstrated that the fiat band voltage can be reduced by 0.4 ...In this paper, we report the fabrication, electrical and physical characteristics of TiN/HfO2/Si MOS capacitors with erbium (Er) ion implantation. It is demonstrated that the fiat band voltage can be reduced by 0.4 V due to the formation of Er oxide. Moreover, it is observed that the equivalent oxide thickness is thinned down by 0.5 nm because the thickness of interfacial layer is significantly reduced, which is thought to be attributed to the strong binding capability of the implanted Er atoms with oxygen atoms. In addition, cross-sectional transmission electron microscopy experiment shows that the HfO2 layer with Er ion implantation is still amorphous after annealing at a high temperature. This Er ion implantation technique has the potential to be implemented as a band edge metal gate solution for NMOS without a capping layer, and may also satisfy the demand of the EOT reduction in 32 nm technology node.展开更多
TiAIC metal gate for the metal-oxide-semiconductor field-effect-transistor (MOSFET) is grown by the atorr/ic layer deposition method using TiCI4 and AI(CH3) 3 (TMA) as precursors. It is found that the major PrOd...TiAIC metal gate for the metal-oxide-semiconductor field-effect-transistor (MOSFET) is grown by the atorr/ic layer deposition method using TiCI4 and AI(CH3) 3 (TMA) as precursors. It is found that the major PrOduct of the TIC14 and TMA reaction is TiA1C, and the components of C and A1 are found to increase with higher growth temperature. The reaction mechanism is investigated by using x-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FFIR), and scanning electron microscope (SEM). The reaction mechanism is as follows. Ti is generated through the reduction of TiCI4 by TMA. The reductive behavior of TMA involves the formation of ethane. The Ti from the reduction of TIC14 by TMA reacts with ethane easily forming heterogenetic TiCH2, TiCH=CH2 and TiC fragments. In addition, TMA thermally decomposes, driving A1 into the TiC film and leading to TiA1C formation. With the growth temperature increasing, TMA decomposes more severely, resulting in more C and A1 in the TiA1C film. Thus, the film composition can be controlled by the growth temperature to a certain extent.展开更多
Sub-20 nm node bulk FinFET PMOS devices with an all-last high-k/metal gate (HK/MG) process are fabricated and the influence of a series of device parameters on the device scaling is investigated. The high and thin F...Sub-20 nm node bulk FinFET PMOS devices with an all-last high-k/metal gate (HK/MG) process are fabricated and the influence of a series of device parameters on the device scaling is investigated. The high and thin Fin structure with a tapered sidewall shows better performance than the normal Fin structure. The punch through stop layer (PTSL) and source drain extension (SDE) doping profiles are carefully optimized. The device without SDE annealing shows a larger drive current than that with SDE annealing due to better Si crystal regrowth in the amorphous Fin structure after source/drain implantation. The band-edged MG has a better short channel effect immunity, but the lower effective work function (EWF) MG shows a larger driveability. A tradeoff choice for different EWF MGs should be carefully designed for the device's scaling.展开更多
The development of next 32 nm generation and below needs innovations on not only device structures, but also fabrication techniques and material selections. Among those promising technologies, new gate structures as h...The development of next 32 nm generation and below needs innovations on not only device structures, but also fabrication techniques and material selections. Among those promising technologies, new gate structures as high-κ gate dielectric and metal gate, strain channel carrier mobility enhancement technology, and novel non-planar MOSFET structures are all possible candidate technologies. In this paper, we will specify our discussion on the research progress of high-κ-metal gate and non-planar MOSFET-technologies that are suitable to 32 nm technology node and beyond.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60936005 and 61076097)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (Grant No. 708083)the Fundamental Research Funds for the Central Universities (Grant No. 20110203110012)
文摘In this paper the influences of the metal-gate and high-k/SiO 2 /Si stacked structure on the metal-oxide-semiconductor field-effect transistor(MOSFET) are investigated.The flat-band voltage is revised by considering the influences of stacked structure and metal-semiconductor work function fluctuation.The two-dimensional Poisson's equation of potential distribution is presented.A threshold voltage analytical model for metal-gate/high-k/SiO 2 /Si stacked MOSFETs is developed by solving these Poisson's equations using the boundary conditions.The model is verified by a two-dimensional device simulator,which provides the basic design guidance for metal-gate/high-k/SiO 2 /Si stacked MOSFETs.
基金supported by the State Key Development Program for Basic Research of China(Grant No. 2011CBA00602)the National Natural Science Foundation of China(Grant Nos. 60876076 and 60976013)
文摘In this paper, we report the fabrication, electrical and physical characteristics of TiN/HfO2/Si MOS capacitors with erbium (Er) ion implantation. It is demonstrated that the fiat band voltage can be reduced by 0.4 V due to the formation of Er oxide. Moreover, it is observed that the equivalent oxide thickness is thinned down by 0.5 nm because the thickness of interfacial layer is significantly reduced, which is thought to be attributed to the strong binding capability of the implanted Er atoms with oxygen atoms. In addition, cross-sectional transmission electron microscopy experiment shows that the HfO2 layer with Er ion implantation is still amorphous after annealing at a high temperature. This Er ion implantation technique has the potential to be implemented as a band edge metal gate solution for NMOS without a capping layer, and may also satisfy the demand of the EOT reduction in 32 nm technology node.
基金Project supported by the Key Technology Study for 16/14 nm Program of the Ministry of Science and Technology of China(Grant No.2013ZX02303)
文摘TiAIC metal gate for the metal-oxide-semiconductor field-effect-transistor (MOSFET) is grown by the atorr/ic layer deposition method using TiCI4 and AI(CH3) 3 (TMA) as precursors. It is found that the major PrOduct of the TIC14 and TMA reaction is TiA1C, and the components of C and A1 are found to increase with higher growth temperature. The reaction mechanism is investigated by using x-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FFIR), and scanning electron microscope (SEM). The reaction mechanism is as follows. Ti is generated through the reduction of TiCI4 by TMA. The reductive behavior of TMA involves the formation of ethane. The Ti from the reduction of TIC14 by TMA reacts with ethane easily forming heterogenetic TiCH2, TiCH=CH2 and TiC fragments. In addition, TMA thermally decomposes, driving A1 into the TiC film and leading to TiA1C formation. With the growth temperature increasing, TMA decomposes more severely, resulting in more C and A1 in the TiA1C film. Thus, the film composition can be controlled by the growth temperature to a certain extent.
基金supported by the National 02 IC Projectsthe Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences
文摘Sub-20 nm node bulk FinFET PMOS devices with an all-last high-k/metal gate (HK/MG) process are fabricated and the influence of a series of device parameters on the device scaling is investigated. The high and thin Fin structure with a tapered sidewall shows better performance than the normal Fin structure. The punch through stop layer (PTSL) and source drain extension (SDE) doping profiles are carefully optimized. The device without SDE annealing shows a larger drive current than that with SDE annealing due to better Si crystal regrowth in the amorphous Fin structure after source/drain implantation. The band-edged MG has a better short channel effect immunity, but the lower effective work function (EWF) MG shows a larger driveability. A tradeoff choice for different EWF MGs should be carefully designed for the device's scaling.
文摘The development of next 32 nm generation and below needs innovations on not only device structures, but also fabrication techniques and material selections. Among those promising technologies, new gate structures as high-κ gate dielectric and metal gate, strain channel carrier mobility enhancement technology, and novel non-planar MOSFET structures are all possible candidate technologies. In this paper, we will specify our discussion on the research progress of high-κ-metal gate and non-planar MOSFET-technologies that are suitable to 32 nm technology node and beyond.