期刊文献+
共找到115篇文章
< 1 2 6 >
每页显示 20 50 100
金属/空气电池的研究进展 被引量:24
1
作者 朱明骏 袁振善 +2 位作者 桑林 丁飞 刘浩杰 《电源技术》 CAS CSCD 北大核心 2012年第12期1953-1955,共3页
金属/空气电池是以轻质金属作为负极活性物质,以空气中的氧气作为正极活性物质,氧气通过气体扩散电极到达气-液-固三相界面与金属负极反应而放出电能。它具有高比能量、放电电压平稳、低成本、无毒、污染小、结构简单等优点,被认为是未... 金属/空气电池是以轻质金属作为负极活性物质,以空气中的氧气作为正极活性物质,氧气通过气体扩散电极到达气-液-固三相界面与金属负极反应而放出电能。它具有高比能量、放电电压平稳、低成本、无毒、污染小、结构简单等优点,被认为是未来很有发展和应用前景的新能源。按金属负极种类的不同,目前金属空气电池大致分为4类:锌/空气电池、铝/空气电池、镁/空气电池、锂/空气电池,介绍了这4种电池的研究进展。 展开更多
关键词 金属 空气
下载PDF
Recent progress in rechargeable alkali metal-air batteries 被引量:13
2
作者 Xin Zhang Xin-Gai Wang +1 位作者 Zhaojun Xie Zhen Zhou 《Green Energy & Environment》 SCIE 2016年第1期4-17,共14页
Rechargeable alkali metal-air batteries are considered as the most promising candidate for the power source of electric vehicles(EVs) due to their high energy density. However, the practical application of metal-air b... Rechargeable alkali metal-air batteries are considered as the most promising candidate for the power source of electric vehicles(EVs) due to their high energy density. However, the practical application of metal-air batteries is still challenging. In the past decade, many strategies have been purposed and explored, which promoted the development of metal-air batteries. The reaction mechanisms have been gradually clarified and catalysts have been rationally designed for air cathodes. In this review, we summarize the recent development of alkali metal-air batteries from four parts: metal anodes, electrolytes, air cathodes and reactant gases, wherein we highlight the important achievement in this filed. Finally problems and prospective are discussed towards the future development of alkali metal-air batteries. 展开更多
关键词 metal-air batteries Alkali metal anodes Electrolytes Ionic liquids air cathodes
下载PDF
A review on system and materials for aqueous flexible metal-air batteries 被引量:4
3
作者 Lixue Jiang Xiaoxuan Luo Da‐Wei Wang 《Carbon Energy》 SCIE CSCD 2023年第3期138-159,共22页
The exploration of aqueous flexible metal-air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices.Aqueous flexible metal-a... The exploration of aqueous flexible metal-air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices.Aqueous flexible metal-air batteries feature Earth-abundant materials,environmental friendliness,and operational safety.Each part of one metal-air battery can significantly affect the overall performance.This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high-performance metal electrodes,solid-state electrolytes,and air electrodes.Bifunctional oxygen electrocatalysts with high activity and long-term stability for constructing efficient air electrodes in flexible metal-air batteries are summarized including metal-free carbon-based materials and nonprecious Co/Fe-based materials(alloys,metal oxides,metal sulfites,metal phosphates,metal nitrates,single-site metal-nitrogen-carbon materials,and composites).Finally,a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid-state metal-air batteries. 展开更多
关键词 ACTIVITY air electrodes flexible metal-air batteries oxygen electrocatalysts solid‐state electrolytes stability
下载PDF
Recent progress and future perspectives of flexible metal‐air batteries 被引量:7
4
作者 Tingzhen Li Xinwen Peng +17 位作者 Peng Cui Ge Shi Wu Yang Zehong Chen Yongfa Huang Yongkang Chen Jinyuan Peng Ren Zou Xiaoyan Zeng Jian Yu Jianyun Gan Zhiyuan Mu Yuling Chen Jiaming Zeng Juan Liu Yunyi Yang Yujia Wei Jun Lu 《SmartMat》 2021年第4期519-553,共35页
With the rapid development of wearable and intelligent flexible electronic devices(FEDs),the demand for flexible energy storage/conversion devices(ESCDs)has also increased.Rechargeable flexible metal‐air batteries(MA... With the rapid development of wearable and intelligent flexible electronic devices(FEDs),the demand for flexible energy storage/conversion devices(ESCDs)has also increased.Rechargeable flexible metal‐air batteries(MABs)are expected to be one of the most ideal ESCDs due to their high theoretical energy density,cost advantage,and strong deformation adaptability.With the improvement of the device design,material assemblies,and manufacturing technology,the research on the electrochemical performance of flexible MABs has made significant progress.However,achieving the high mechanical flexibility,high safety,and wearable comfortability required by FEDs while maintaining the high performance of flexible MABs are still a daunting challenge.In this review,flexible Zn‐air and Li‐air batteries are mainly exemplified to describe the most recent progress and challenges of flexible MABs.We start with an overview of the structure and configuration of the flexible MABs and discuss their impact on battery performance and function.Then it focuses on the research progress of flexible metal anodes,gel polymer electrolytes,and air cathodes.Finally,the main challenges and future research perspectives involving flexible MABs for FEDs are proposed. 展开更多
关键词 air cathode flexible electronic device flexible metalair battery gel polymer electrolytes metal anode
原文传递
MOF-derived Co-MOF,O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn-air batteries and water-splitting 被引量:8
5
作者 Xinde Duan Na Pan +5 位作者 Can Sun Kexin Zhang Xukun Zhu Mingdao Zhang Li Song Hegen Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期290-298,共9页
Development of high-efficiency non-noble electrocatalysts for oxygen reduction reaction(ORR),oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)is urgently needed for high-performance Zn-air batteries a... Development of high-efficiency non-noble electrocatalysts for oxygen reduction reaction(ORR),oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)is urgently needed for high-performance Zn-air batteries and overall water splitting.Here,a facile strategy to synthesize novel Co-MOF,O-doped carbon(Co-MOF-T)based on Zn,Co-doped glucosamine and ZIF-8 by pyrolysis at temperature T was demonstrated.The prepared Co-MOF-800 showed a superior oxygen reduction reaction(ORR)activity comparable to that of commercial Pt/C catalyst.In addition,this catalyst shows great potential in the overall water splitting due to the excellent oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)activities.Based on the trifunctional activity,the primary Zn-air batteries using a Co-MOF-800 air electrode achieved a high open-circuit voltage of 1.38 V,a specific capacity of 671.6 mAh g^(-1) Zn,and a prominent peak power density of 144 mW cm^(-2).Also,the rechargeable Zn-air batteries based on CoMOF-800 air electrode could be smoothly run for 510 cycles with a low voltage gap of 0.58 V.Finally,the trifunctional Co-MOF-800 catalyst was applied to boost the electrochemical water splitting,demonstrating its promising potential as a green energy material for practical applications. 展开更多
关键词 metal-organic frameworks Carbon catalysts Trifunctional electrocatalyst metal-air batteries Water splitting
下载PDF
Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions 被引量:8
6
作者 Hui Zhao Zhong-Yong Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期89-104,共16页
To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surfa... To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surface/interface engineering is found to be effective in achieving novel physicochemical properties and synergistic effects in nanomaterials for electrocatalysis.Among various engineering strategies,heteroatom-doping has been regarded as a most promising method to improve the electrocatalytic performance via the regulation of electronic structure of catalysts,and numerous works were reported on the synthesis method and mechanism investigation of heteroatom-doping electrocatalysts,though the heteroatom-doping can only provide limited active sites.Engineering of other defects such as vacancies and edge sites and construction of heterostructure have shown to open up a potential avenue for the development of noble metal-free electrocatalysts.In addition,surface functionalization can attach various molecules onto the surface of materials to easily modify their physical or chemical properties,being as a promising complement or substitute for offering materials with catalytic properties.This paper gives the insights into the diverse strategies of surface/interface engineering of the highefficiency noble metal-free electrocatalysts for energy-related electrochemical reactions.The significant advances are summarized.The unique advantages and mechanisms for specific applications are highlighted.The current challenges and outlook of this growing field are also discussed. 展开更多
关键词 Noble metal-free electrocatalysts Electrocatalysis Surface/interface engineering metal-air battery Overall water splitting
下载PDF
Micro-nanostructural designs of bifunctional electrocatalysts for metal-air batteries 被引量:8
7
作者 Fang Shi Xuefeng Zhu Weishen Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期390-403,共14页
Water-based rechargeable metal-air batteries play an important role in the storage and conversion of renewable electric energy.However,the sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution re... Water-based rechargeable metal-air batteries play an important role in the storage and conversion of renewable electric energy.However,the sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)have limited the practical application of rechargeable metal-air batteries.Most of reviews were focused on single functional electrocatalysts while few on bifunctional electrocatalysts.It is indispensable but challenging to design a bifunctional electrocatalyst that is active and stable to the two reactions.Recently,attempts to develop high active bifunctional electrocatalysts for both ORR and OER increase rapidly.Much work is focused on the micro-nano design of advanced structures to improve the performance of bifunctional electrocatalyst.Transition-metal materials,carbon materials and composite materials,and the methods developed to prepare micro-nano structures,such as electrochemical methods,chemical vapor deposition,hydrothermal methods and template methods are reported in literatures.Additionally,many strategies,such as adjustments of electronic structures,oxygen defects,metal-oxygen bonds,interfacial strain,nano composites,heteroatom doping etc.,have been used extensively to design bifunctional electrocatalysts.To well understand the achievements in the recent literatures,this review focuses on the micro-nano structural design of materials,and the related methods and strategies are classed into two groups for the improvement of intrinsic and apparent activities.The fine adjustment of nano structures and an in-depth understanding of the reaction mechanism are also discussed briefly. 展开更多
关键词 Oxygen reduction reaction Oxygen evolution reaction Rechargeable metal-air batteries Bifunctional electrocatalysts Micro-nano structure
下载PDF
Advances in Porous Perovskites:Synthesis and Electrocatalytic Performance in Fuel Cells and Metal-Air Batteries 被引量:7
8
作者 Jie Yu Ran Ran +3 位作者 Yijun Zhong Wei Zhou Meng Ni Zongping Shao 《Energy & Environmental Materials》 2020年第2期121-145,共25页
With a rising energy demand and anabatic environmental crisis arising from the fast growth in human population and society economics,numerous efforts have been devoted to explore and design plentiful multifunctional m... With a rising energy demand and anabatic environmental crisis arising from the fast growth in human population and society economics,numerous efforts have been devoted to explore and design plentiful multifunctional materials for meeting highefficiency energy transfer processes,which happen in various developed energy conversion and storage systems.As a special kind of multi-metal oxides,perovskite with attractive physical and chemical properties,is becoming a rapidly rising star on the horizon of high-performance catalytic materials with substantial research behaviors worldwide.The porous nanostructure in targeted catalysts is favorable to the catalytic activity and thus improves the overall efficiency of these energy-related installations.In this review paper,recent advances made in the porous perovskite nanostructures for catalyzing several anodic or cathodic reactions in fuel cells and metal-air batteries are comprehensively summarized.Plenty of general preparation methods employed to attain porous perovskite-type oxides are provided,followed by a further discussion about the influence of various strategies on structures and catalytic properties of the porous perovskites.Furthermore,deep insights gathered in the future development of porous perovskite-based materials for energy conversion and storage technologies are also provided. 展开更多
关键词 fuel cells metal-air batteries oxygen evolution reaction oxygen reduction reaction porous perovskite-type oxides
下载PDF
N-doped porous carbon hollow microspheres encapsulated with iron-based nanocomposites as advanced bifunctional catalysts for rechargeable Zn-air battery 被引量:7
9
作者 Ran Hao Jin-Tao Ren +3 位作者 Xian-Wei Lv Wei Li Yu-Ping Liu Zhong-Yong Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期14-21,共8页
The design and development of low-cost,efficient,and stable bifunctional electrocatalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desirable for rechargeable metal-air batteries.In t... The design and development of low-cost,efficient,and stable bifunctional electrocatalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desirable for rechargeable metal-air batteries.In this work,N-doped porous hollow carbon spheres encapsulated with ultrafine Fe/Fe3O4 nanoparticles(FeOx@N-PHCS)were fabricated by impregnation and subsequent pyrolysis,using melamine-formaldehyde resin spheres as self-sacrifice templates and polydopamine as N and C sources.The sufficient adsorption of Fe3+on the polydopamine endowed the formation of Fe-Nx species upon high-temperature carbonization.The prepared FeOx@N-PHCS has advanced features of large specific surface area,porous hollow structure,high content of N dopants,sufficient Fe-Nx species and ultrafine FeOx nanoparticles.These features endow FeOx@N-PHCS with enhanced mass transfer and considerable active sites,leading to high activity and stability in catalyzing ORR and OER in alkaline electrolyte.Furthermore,the rechargeable Zn-air battery with FeOx@N-PHCS as air cathode catalyst exhibits a large peak power density,narrow charge-discharge potential gap and robust cycling stability,demonstrating the potential of the fabricated FeOx@N-PHCS as a promising electrode material for metal-air batteries.This new finding may open an avenue for rational design of bifunctional catalysts by integrating different active components within all-in-one catalyst for different electrochemical reactions. 展开更多
关键词 Bifunctional electrocatalysts Rechargeable metal-air batteries N-doped porous carbon nanostructure Fe/Fe3O4 nanoparticles Fe-Nx species
下载PDF
Rational design of carbon-based electrocatalysts for enhancing redox reactions in rechargeable metal batteries 被引量:2
10
作者 Song Chen Qianwu Chen +4 位作者 Siyu Ding Yadong Tian Jun Wang Shaoqi Hou Jintao Zhang 《Nano Research》 SCIE EI CSCD 2023年第4期4246-4276,共31页
Exploitation of the efficient and cost-effective electrode materials is urgently desirable for the development of advanced energy devices.With the unique features of good electronic conductivity,structure flexibility,... Exploitation of the efficient and cost-effective electrode materials is urgently desirable for the development of advanced energy devices.With the unique features of good electronic conductivity,structure flexibility,and desirable physicochemical property,carbon-based nanomaterials have attracted enormous research attention as efficient electrode materials.Electronic and microstructure engineering of carbon-based nanomaterials are the keys to regulate the electrocatalytic properties for the specific redox reactions of advanced metal-based batteries.However,the critical roles of carbon-based electrocatalysts for rechargeable metal batteries have not been comprehensively discussed.With the basic introduction on the electronic and microstructure engineering strategies,we summarize the recent advances on the rational design of carbon-based electrocatalysts for the important redox reactions in various metal-air batteries and metal-halogen batteries.The relationships between the composition,structure,and the electrocatalytic properties of carbon-based materials were well-addressed to enhance the battery performance.The overview of present challenges and opportunities of the carbon-based active materials for future energy-related applications was also discussed. 展开更多
关键词 carbon-based nanomaterials electronic structure microstructure modulations metal-air batteries metal-halogen batteries
原文传递
Application of metal-organic frameworks,covalent organic frameworks and their derivates for the metal-air batteries 被引量:2
11
作者 Yunyun Xu Hairong Xue +6 位作者 Xijuan Li Xiaoli Fan Peng Li Tengfei Zhang Kun Chang Tao Wang Jianping He 《Nano Research Energy》 2023年第2期130-150,共21页
Metal-organic frameworks(MOFs)and covalent organic frameworks(COFs)as the novel porous materials have the merits of diverse,adjustable functionality,high porosity and surface area,which have great application prospect... Metal-organic frameworks(MOFs)and covalent organic frameworks(COFs)as the novel porous materials have the merits of diverse,adjustable functionality,high porosity and surface area,which have great application prospects in the gas storage,separation and catalysis.In addition,their derivates make up for the insufficient of electronic conductivity and chemical stability of MOFs and COFs,and provide a new ideal for accurate control of material structure.Up to now,many efficient electrocatalysts have been designed based on MOFs,COFs and their derivates for O_(2)reduction/evolution reactions(ORR/OER)and CO_(2)reduction/evolution reactions(CO_(2)RR/CO_(2)ER)in the metal-air batteries.In this review,the latest development of MOFs,COFs and their derivates in the metal-air batteries is summarized,and we discuss the structural characteristics of these materials and their corresponding mechanisms of action.By comprehensively reviewing the advantages,challenges and prospects of MOFs and COFs,we hope that the organic framework materials will shed more profound insights into the development of electrocatalysis and energy storage in the future. 展开更多
关键词 metal-organic frameworks covalent organic frameworks the derivates ELECTROCATALYSIS metal-air batteries
原文传递
Recent advances in solid-state metal-air batteries 被引量:2
12
作者 Qi Sun Lei Dai +3 位作者 Tingting Luo Ling Wang Feng Liang Shan Liu 《Carbon Energy》 SCIE CSCD 2023年第2期148-170,共23页
Solid-state metal-air batteries have emerged as a research hotspot due to their high energy density and high safety.Moreover,side reactions caused by infiltrated gases(O_(2),H_(2)O,or CO_(2))and safety issues caused b... Solid-state metal-air batteries have emerged as a research hotspot due to their high energy density and high safety.Moreover,side reactions caused by infiltrated gases(O_(2),H_(2)O,or CO_(2))and safety issues caused by liquid electrolyte leakage will be eliminated radically.However,the solid-state metal–air battery is still in its infancy,and many thorny problems still need to be solved,such as the large resistance of the metal/electrolyte interface and catalyst design.This review will summarize some important progress and key issues for solid-state metal-air batteries,especially the lithium-,sodium-,and zinc-based metal-air batteries,clarify some core issues,and forecast the future direction of the solid-state metal-air batteries. 展开更多
关键词 cathode structure interface stability metal anode metal-air batteries solid electrolyte
下载PDF
2020 roadmap on two-dimensional materials for energy storage and conversion 被引量:2
13
作者 Baolin Xu Shihan Qi +14 位作者 Mengmeng Jin Xiaoyi Cai Linfei Lai Zhouting Sun Xiaogang Han Zifeng Lin Hui Shao Peng Peng Zhonghua Xiang Johan E.ten Elshof Rou Tan Chen Liu Zhaoxi Zhang Xiaochuan Duan Jianmin Ma 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第12期2053-2064,共12页
Energy storage and conversion have attained significant intere st owing to its important applications that reduce CO2 emission through employing green energy.Some promising technologies are included metalair batteries... Energy storage and conversion have attained significant intere st owing to its important applications that reduce CO2 emission through employing green energy.Some promising technologies are included metalair batteries,metal-sulfur batteries,metal-ion batteries,electrochemical capacitors,etc.Here,metal elements are involved with lithium,sodium,and magnesium.For these devices,electrode materials are of importance to obtain high performance.Two-dimensional(2 D) materials are a large kind of layered structured materials with promising future as energy storage materials,which include graphene,black phosporu s,MXenes,covalent organic frameworks(COFs),2 D oxides,2 D chalcogenides,and others.Great progress has been achieved to go ahead for 2 D materials in energy storage and conversion.More researchers will join in this research field.Under the background,it has motivated us to contribute with a roadmap on ’two-dimensional materials for energy storage and conversion. 展开更多
关键词 Graphene Black phosphorus MXenes Covalent organic frameworks OXIDES CHALCOGENIDES metal-air batteries metal-sulfur batteries metal-ion batteries Electrochemical capacitors
原文传递
One-step,in situ formation of WN-W_(2)C heterojunctions implanted on N doped carbon nanorods as efficient oxygen reduction catalyst for metal-air battery 被引量:2
14
作者 Yue Du Wenxue Chen +7 位作者 Lina Zhou Rui Hu Shizhu Wang Xueqing Li Yunlong Xie Lun Yang Yisi Liu Zhenhui Liu 《Nano Research》 SCIE EI CSCD 2023年第7期8773-8781,共9页
Transition metal nitrides and carbides have attracted intensive attentions in metal-air battery application due to their metallic electron transport behavior and high chemical stability toward the oxygen reduction rea... Transition metal nitrides and carbides have attracted intensive attentions in metal-air battery application due to their metallic electron transport behavior and high chemical stability toward the oxygen reduction reaction(ORR).Herein,the polyoxometalate@polyaniline composite derived WN-W_(2)C heterostructured composite(WN-W_(2)C@pDC)has been fabricated through an in situ nitriding-carbonization strategy,with WN-W_(2)C nanoparticles implanted on N doped carbon nanorods.Asfabricated WN-W_(2)C@pDC demonstrates prominent electrocatalytic performance towards ORR and excellent cycling stability in metal-air battery,which possesses positive half-wave potential and large diffusion limiting current density(0.81 V and 5.8 mA·cm^(-2)).Moreover,it demonstrates high peak power density of 157.4 mW·cm^(-2)as Al-air primary cathode and excellent stability at the discharge-charge test(>500 h)of Zn-air secondary battery.The excellent activity and durability of WNW_(2)C@pDC catalyst should be attributed to the combined effect of intimate WN-W_(2)C heterointerfaces,unique embedded nanoparticles structure,and excellent electrical media of N doped carbon,confirmed by a series of contrast experiments. 展开更多
关键词 WN-W_(2)C heterojunctions polyoxometalate@polyaniline composite oxygen reduction reaction metal-air battery
原文传递
Recent advances in energy chemistry of precious-metal-free catalysts for oxygen electrocatalysis 被引量:4
15
作者 Bin Wang Xiaoyang Cui +2 位作者 Jiaqi Huang Rui Cao Qiang Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第12期1757-1767,共11页
The oxygen evolution reaction(OER) and oxygen reduction reaction(ORR) are coupled with various sustainable energy systems and are significant for the future energy scenario. Both of them suffer from sluggish kinetics,... The oxygen evolution reaction(OER) and oxygen reduction reaction(ORR) are coupled with various sustainable energy systems and are significant for the future energy scenario. Both of them suffer from sluggish kinetics, which calls for cost-effective and high-performance electrocatalysts to promote. The oxygen electrolysis of OER and ORR is heterogeneous reaction, which involves reactant and electron transfer, and a serial of complicate surface reactions. Both intrinsic catalyst activity and extrinsic physicochemical characters play a vital role in overall electrocatalytic reactivity. Herein. recent advances in rational design and effective construction of precious-metal-free materials are reviewed for OER and ORR, respectively, in the respects of electronic structure regulation, nanostructure tailor, and freestanding electrode fabrication. The reaction mechanism of OER and ORR are also updated. This review provides emerging energy chemistry concepts and materials chemistry strategies of electrocatalysts for OER and ORR, which is also enlightening for other energy conversion devices with targeted optimization. 展开更多
关键词 Oxygen electrocatalysis Oxygen reduction reaction Oxygen evolution reaction metal-air batteries Nanostructured electrocatalysts
原文传递
An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries 被引量:4
16
作者 Lei Zhang Qinsi Shao Jiujun Zhang 《Materials Reports(Energy)》 2021年第1期88-100,共13页
Although metal-air batteries(MABs)including Mg-air batteries possess high theoretical energy densities and are promising in energy storage systems,the poor performances and high cost of corresponding electrocatalysts ... Although metal-air batteries(MABs)including Mg-air batteries possess high theoretical energy densities and are promising in energy storage systems,the poor performances and high cost of corresponding electrocatalysts and air cathodes significantly limit practical application.Based on this,the present review gives a summary of the recent progress in the development of cost effective non-noble metal electrocatalysts and their associated air cathodes for MABs,with a particular focus on Mg-air batteries including the aspects of corresponding catalyst synthesis and characterization,catalyzed oxygen reduction reaction(ORR)mechanism,air cathode fabrication and performance validation.The paper also provides an analysis on the issues that challenge the development of advanced electrocatalysts and the associated air cathodes for Mg-air batteries,as well as a discussion of potential research directions that may help resolve these issues and facilitate the practical application of Mg-air batteries. 展开更多
关键词 metal-air battery Magnesium-air battery Primary battery ELECTROCATALYST CATHODE Oxygen reduction ELECTROLYTE
下载PDF
Advanced noble-metal-free bifunctional electrocatalysts for metal-air batteries 被引量:2
17
作者 Wenhao Tang Boya Li +7 位作者 Kewei Teng Xiaodong Wang Ruiping Liu Mengwei Wu Lei Zhang Pengfei Ren Junqing Zhang Ming Feng 《Journal of Materiomics》 SCIE 2022年第2期454-474,共21页
The sluggish reaction kinetics at the oxygen cathode is one of the important issues hindering the commercialization of the metal-air batteries.Although the noble metal can be used as the high-efficiency electrocatalys... The sluggish reaction kinetics at the oxygen cathode is one of the important issues hindering the commercialization of the metal-air batteries.Although the noble metal can be used as the high-efficiency electrocatalyst to solve the problems to some extent,the high cost and scarcity of these noble-metal catalysts have limited their application in electrocatalysis.In this review,we discussed the mecha-nisms of the ORR and OER,and proposed the principles for the bifunctional electrocatalysts firstly,and then the state-of-the-art bifunctional catalysts,including carbon-based materials and transition-metal-based materials.On the basis of that,the self-supporting 3D noble-metal-free bifunctional ORR/OER catalysts were also discussed.Finally,the perspectives for the bifunctional electrocatalysts were discussed. 展开更多
关键词 Bifunctional electrocatalyst Noble-metal free Carbon Transition metal metal-air battery
原文传递
Mesoscopic numerical computation model of air-diffusion electrode of metal/air batteries
18
作者 刘晓毅 徐献芝 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第5期571-576,共6页
This work creates a droplet battery model based on the electrolyte performance in the porous electrode, studies the current density on the mesoscopic scale, and explains how the mesoscopic structure of the porous elec... This work creates a droplet battery model based on the electrolyte performance in the porous electrode, studies the current density on the mesoscopic scale, and explains how the mesoscopic structure of the porous electrode influences the current density on the air-diffusion electrode. Near the three-phase line, there is a strong band containing nearly 80% current. For porous electrodes, the total current is proportional to the length of the strong band. Thus, it can be inferred that on the macroscopic scale, the longer the total length of the strong band on unit area is, the larger the current density is. 展开更多
关键词 droplet battery metal/air battery air-diffusion electrode mesoscopic computation strong band three-phase line
下载PDF
Advanced Noncarbon Materials as Catalyst Supports and Non‑noble Electrocatalysts for Fuel Cells and Metal–Air Batteries 被引量:4
19
作者 Shiming Zhang Menghui Chen +6 位作者 Xiao Zhao Jialin Cai Wei Yan Joey Chung Yen Shengli Chen Yan Yu Jiujun Zhang 《Electrochemical Energy Reviews》 SCIE EI 2021年第2期336-381,共46页
Electrochemical energy systems such as fuel cells and metal–air batteries can be used as clean power sources in the field of electric transportation and possess great potential in the reduction of various energy and ... Electrochemical energy systems such as fuel cells and metal–air batteries can be used as clean power sources in the field of electric transportation and possess great potential in the reduction of various energy and environmental issues.In these systems,the oxygen reduction reaction(ORR)at the cathode is the rate-determining factor for overall system performance,and up to now,platinum group metals supported on carbon materials,especially Pt,remain the highest performing and the most practical ORR electrocatalysts.However,corresponding carbonaceous catalyst supports are extremely susceptible to corrosion under electrochemical operation,and therefore,the extensive exploration of alternative stable materials for ORR electrocatalysts with both high electrochemical stability and catalytic performance is essential.Here,noncarbon materials with high corrosion resistance have been explored to substitute traditional carbon supports or even act directly as low-cost non-noble metal electrocatalysts,and based on this,this review will present a comprehensive overview and deep analysis of the recent progress in noncarbon materials,including metals,oxides,nitrides,carbides,sulfides,and so on.Overall,general attributes associated with noncarbon materials include high corrosion resistance,strong metal–support interaction,and impressive porous structure retention.However,major drawbacks include low electrical conductivity,insufficient chemical stability in acidic or alkaline media,and poor electrochemical stability at ORR electrode potentials.To overcome these challenges,this review will also summarize efficient strategies such as combining with highly conductive materials,introducing dopants and forming vacancies to result in promising electrocatalytic ORR performances.Finally,this review will propose possible research directions to facilitate future research and development toward the practical application of noncarbon-based ORR electrocatalysts. 展开更多
关键词 Noncarbon materials Supports ELECTROCATALYSTS Oxygen reduction reaction Fuel cells metal-air batteries
原文传递
一种新型可充的水系铋-空气电池
20
作者 程翔然 姜怡 +5 位作者 屈佳禾 李传发 张琨 张延安 王兵杰 彭慧胜 《Science China Materials》 SCIE EI CAS CSCD 2023年第12期4615-4621,共7页
水系金属空气电池具有理论能量密度高、安全性高等优点,但受限于金属阳极(如锌、铁、铝、镁)的电化学不可逆性以及碱性电解质对大气中二氧化碳的化学不稳定性.本工作首次设计了一种可充电的铋-空气电池,该电池使用了非碱性的三氟甲磺酸... 水系金属空气电池具有理论能量密度高、安全性高等优点,但受限于金属阳极(如锌、铁、铝、镁)的电化学不可逆性以及碱性电解质对大气中二氧化碳的化学不稳定性.本工作首次设计了一种可充电的铋-空气电池,该电池使用了非碱性的三氟甲磺酸铋(Bi(OTf)_(3))水系电解质.得益于三电子反应和相对于标准氢电极+0.32 V的高电位,铋金属负极具有383 mA h g^(−1)的高比容量和1000次循环的良好稳定性,以及99.6%高库仑效率.铋金属负极在Bi(OTf)_(3)电解液中无腐蚀、钝化和析氢等副反应.此外,非碱性的铋-空气电池通过三氧化二铋(Bi_(2)O_(3))的可逆形成/分解,在环境空气中实现了长期运行稳定性(>200 h).这项工作为探索新型水系金属空气电池作为安全稳定的电源系统提供了新思路. 展开更多
关键词 metal-air battery bismuth anode non-alkaline electrolyte cycling stability
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部