为了提高2 250 mm CVC四辊热轧机板形控制精度,使用非线性有限元软件MSC Marc建立了动态刚性轧辊-弹塑性轧件耦合模型,分析了带钢金属的横向流动规律。为提高精度,采用静态弹性辊系-弹塑性轧件耦合模型得到有载辊缝形状作为动态仿真的...为了提高2 250 mm CVC四辊热轧机板形控制精度,使用非线性有限元软件MSC Marc建立了动态刚性轧辊-弹塑性轧件耦合模型,分析了带钢金属的横向流动规律。为提高精度,采用静态弹性辊系-弹塑性轧件耦合模型得到有载辊缝形状作为动态仿真的初始辊形。分析发现,金属横向流动值随着距轧件中心距离的增大逐渐增大;摩擦力是影响不同厚度间金属横向流动差别的重要因素;金属的横向流动量与压下率、弯辊力、来料凸度以及窜辊量呈线性关系。为了定量分析各因素与横向流动的关系,建立了各因素的影响系数函数,并进行正交试验及方差分析判断交互关系,最后建立插值计算模型,并通过仿真结果验证了其正确性,为相应轧机的在线板形控制提供参考。展开更多
文摘为了提高2 250 mm CVC四辊热轧机板形控制精度,使用非线性有限元软件MSC Marc建立了动态刚性轧辊-弹塑性轧件耦合模型,分析了带钢金属的横向流动规律。为提高精度,采用静态弹性辊系-弹塑性轧件耦合模型得到有载辊缝形状作为动态仿真的初始辊形。分析发现,金属横向流动值随着距轧件中心距离的增大逐渐增大;摩擦力是影响不同厚度间金属横向流动差别的重要因素;金属的横向流动量与压下率、弯辊力、来料凸度以及窜辊量呈线性关系。为了定量分析各因素与横向流动的关系,建立了各因素的影响系数函数,并进行正交试验及方差分析判断交互关系,最后建立插值计算模型,并通过仿真结果验证了其正确性,为相应轧机的在线板形控制提供参考。