Electronics, such as printed circuit board (PCB), transistor, radio frequency identification (RFID), organic light emitting diode (OLED), solar cells, electronic display, lab on a chip (LOC), sensor, actuator,...Electronics, such as printed circuit board (PCB), transistor, radio frequency identification (RFID), organic light emitting diode (OLED), solar cells, electronic display, lab on a chip (LOC), sensor, actuator, and transducer etc. are playing increasingly important roles in people's daily life. Conventional fabrication strategy towards integrated circuit working steps, generally (IC), requesting at least six consumes too much energy, material and water, and is not environmentally friendly. During the etching process, a large amount of raw materials have to be abandoned. Besides, lithography and microfabrication are typically carried out in "Clean room" which restricts the location of IC fabrication and leads to high production costs. As an alternative, the newly emerging inkjet printing electronics are gradually shaping modem electronic industry and its related areas, owing to the invention of a series of conductive inks composed of polymer matrix, conductive fillers, solvents and additives. Nevertheless, the currently available methods also encoun ter some technical troubles due to the low electroconduc tivity, complex sythesis and sintering process of the inks. As an alternative, a fundamentally different strategy was recently proposed by the authors' lab towards truly direct writing of electronics through introduction of a new class of conductive inks made of low melting point liquid metal or its alloy. The method has been named as direct writingof electronics based on alloy series of functional circuits, and metal (DREAM) ink. A sensors, electronic elements and devices can thus be easily written on various either soft or rigid substrates in a moment. With more and more technical progresses and fundamental discoveries being kept made along this category, it was found that a new area enabled by the DREAM ink electronics is emerging, which would have tremendous impacts on future energy and environmental sciences. In order to promote the research and development along this direction展开更多
文摘Electronics, such as printed circuit board (PCB), transistor, radio frequency identification (RFID), organic light emitting diode (OLED), solar cells, electronic display, lab on a chip (LOC), sensor, actuator, and transducer etc. are playing increasingly important roles in people's daily life. Conventional fabrication strategy towards integrated circuit working steps, generally (IC), requesting at least six consumes too much energy, material and water, and is not environmentally friendly. During the etching process, a large amount of raw materials have to be abandoned. Besides, lithography and microfabrication are typically carried out in "Clean room" which restricts the location of IC fabrication and leads to high production costs. As an alternative, the newly emerging inkjet printing electronics are gradually shaping modem electronic industry and its related areas, owing to the invention of a series of conductive inks composed of polymer matrix, conductive fillers, solvents and additives. Nevertheless, the currently available methods also encoun ter some technical troubles due to the low electroconduc tivity, complex sythesis and sintering process of the inks. As an alternative, a fundamentally different strategy was recently proposed by the authors' lab towards truly direct writing of electronics through introduction of a new class of conductive inks made of low melting point liquid metal or its alloy. The method has been named as direct writingof electronics based on alloy series of functional circuits, and metal (DREAM) ink. A sensors, electronic elements and devices can thus be easily written on various either soft or rigid substrates in a moment. With more and more technical progresses and fundamental discoveries being kept made along this category, it was found that a new area enabled by the DREAM ink electronics is emerging, which would have tremendous impacts on future energy and environmental sciences. In order to promote the research and development along this direction