The intricate correlation between charge degrees of freedom and physical properties is a fascinating area of research in solid state chemistry and condensed matter physics.Herein,we report on the pressureinduced succe...The intricate correlation between charge degrees of freedom and physical properties is a fascinating area of research in solid state chemistry and condensed matter physics.Herein,we report on the pressureinduced successive charge transfer and accompanied resistive evolution in honeycomb layered ruthenate AgRuO_(3).Structural revisiting and spectroscopic analyses affirm the ilmenite type R-3 structure with mixed valence cations as Ag^(+1/+2)Ru^(+4/+5)O_(3) at ambient pressure.In-situ pressure-and temperature-dependent resistance variation reveals a successive insulatormetal-insulator transition upon pressing,accompanied by unprecedented charge transfer between Ag and Ru under applied pressure,and a further structural phase transition in the insulator region at higher pressure.These phenomena are also corroborated by in-situ pressure-dependent Raman spectra,synchrotron X-ray diffraction,bond valence sums,and electronic structure calculations,emphasizing the dominated rare Ag2+,and near zero thermal expansion in the ab-plane in the metallic zone mostly due to the Jahn-Teller effect of d9-Ag2+.The multiple electronic instabilities in AgRuO_(3) may offer new possibilities toward novel and unconventionally physical and chemical behaviors in strongly correlated honeycomb lattices.展开更多
Atomically dispersed metals on N-doped carbon supports(M-N_(xCs)) have great potential applications in various fields.However,a precise understanding of the definitive relationship between the configuration of metal s...Atomically dispersed metals on N-doped carbon supports(M-N_(xCs)) have great potential applications in various fields.However,a precise understanding of the definitive relationship between the configuration of metal single atoms and the dielectric loss properties of M-N_(xCs) at the atomic-level is still lacking.Herein,we report a general approach to synthesize a series of three-dimensional(3D)honeycomb-like M-N_xC(M=Mn,Fe,Co,Cu,or Ni) containing metal single atoms.Experimental results indicate that 3D M-N_(xCs) exhibit a greatly enhanced dielectric loss compared with that of the NC matrix.Theoretical calculations demonstrate that the density of states of the d orbitals near the Fermi level is significantly increased and additional electrical dipoles are induced due to the destruction of the symmetry of the local microstructure,which enhances conductive loss and dipolar polarization loss of 3D M-N_(xCs),respectively.Consequently,these 3D M-N_(xCs) exhibit excellent electromagnetic wave absorption properties,outperforming the most commonly reported absorbers.This study systematically explains the mechanism of dielectric loss at the atomic level for the first time and is of significance to the rational design of high-efficiency electromagnetic wave absorbing materials containing metal single atoms.展开更多
Inconel 617 metal honeycombs with designed porosity,cell size and cell morphology were fabricated using fused deposition modelling rapid prototype manufacturing.The microstructure and compression properties of Inconel...Inconel 617 metal honeycombs with designed porosity,cell size and cell morphology were fabricated using fused deposition modelling rapid prototype manufacturing.The microstructure and compression properties of Inconel 617 metal honeycomb were studied.The results indicate that Inconel 617 metal honeycomb structure can be fabricated using fused deposition modelling technique,the processes are simple and the size of honeycomb is controllable.The sintered Inconel 617 honeycombs consist of matrix,γ phase,and grain boundary precipitates,Cr7C3 and M23C6 type carbides.The honeycomb microstructure sintered using fine powder particles are denser than that of coarse powder particles.Yield strength and Young’s modulus increase with the relative density of honeycomb increasing.But the influence of the relative density on Young’s modulus is greater than that of yield strength.展开更多
基金supported by the National Science Foundation of China(grant nos.NSFC-22090041,21875287,U1932217,11974246,12004252,12025408,11921004,11974432,and 92165204)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(grant no.2017ZT07C069)NKRDPC-2017YFA0206203,NKRDPC-2018YFA0306001.
文摘The intricate correlation between charge degrees of freedom and physical properties is a fascinating area of research in solid state chemistry and condensed matter physics.Herein,we report on the pressureinduced successive charge transfer and accompanied resistive evolution in honeycomb layered ruthenate AgRuO_(3).Structural revisiting and spectroscopic analyses affirm the ilmenite type R-3 structure with mixed valence cations as Ag^(+1/+2)Ru^(+4/+5)O_(3) at ambient pressure.In-situ pressure-and temperature-dependent resistance variation reveals a successive insulatormetal-insulator transition upon pressing,accompanied by unprecedented charge transfer between Ag and Ru under applied pressure,and a further structural phase transition in the insulator region at higher pressure.These phenomena are also corroborated by in-situ pressure-dependent Raman spectra,synchrotron X-ray diffraction,bond valence sums,and electronic structure calculations,emphasizing the dominated rare Ag2+,and near zero thermal expansion in the ab-plane in the metallic zone mostly due to the Jahn-Teller effect of d9-Ag2+.The multiple electronic instabilities in AgRuO_(3) may offer new possibilities toward novel and unconventionally physical and chemical behaviors in strongly correlated honeycomb lattices.
基金financial supports from the NNSF of China(Grant No.51972077)the Fundamental Research Funds for the Central Universities(Grant No.3072020CF2518,3072020CFT2505+1 种基金3072021CFT2506,3072021CF2523 and 3072021CF2524)Heilongjiang Touyan Innovation Team Program.
文摘Atomically dispersed metals on N-doped carbon supports(M-N_(xCs)) have great potential applications in various fields.However,a precise understanding of the definitive relationship between the configuration of metal single atoms and the dielectric loss properties of M-N_(xCs) at the atomic-level is still lacking.Herein,we report a general approach to synthesize a series of three-dimensional(3D)honeycomb-like M-N_xC(M=Mn,Fe,Co,Cu,or Ni) containing metal single atoms.Experimental results indicate that 3D M-N_(xCs) exhibit a greatly enhanced dielectric loss compared with that of the NC matrix.Theoretical calculations demonstrate that the density of states of the d orbitals near the Fermi level is significantly increased and additional electrical dipoles are induced due to the destruction of the symmetry of the local microstructure,which enhances conductive loss and dipolar polarization loss of 3D M-N_(xCs),respectively.Consequently,these 3D M-N_(xCs) exhibit excellent electromagnetic wave absorption properties,outperforming the most commonly reported absorbers.This study systematically explains the mechanism of dielectric loss at the atomic level for the first time and is of significance to the rational design of high-efficiency electromagnetic wave absorbing materials containing metal single atoms.
文摘Inconel 617 metal honeycombs with designed porosity,cell size and cell morphology were fabricated using fused deposition modelling rapid prototype manufacturing.The microstructure and compression properties of Inconel 617 metal honeycomb were studied.The results indicate that Inconel 617 metal honeycomb structure can be fabricated using fused deposition modelling technique,the processes are simple and the size of honeycomb is controllable.The sintered Inconel 617 honeycombs consist of matrix,γ phase,and grain boundary precipitates,Cr7C3 and M23C6 type carbides.The honeycomb microstructure sintered using fine powder particles are denser than that of coarse powder particles.Yield strength and Young’s modulus increase with the relative density of honeycomb increasing.But the influence of the relative density on Young’s modulus is greater than that of yield strength.