Let K/Q be any abelian extension where Q is the field of rational numbers. By Galois theory and the Frobenius formula for induced characters, we prove that there exists a metabelian group G and an irreducible characte...Let K/Q be any abelian extension where Q is the field of rational numbers. By Galois theory and the Frobenius formula for induced characters, we prove that there exists a metabelian group G and an irreducible character X of G such that K=Q(X).展开更多
基金Supported by the National Program for the Basic Science Researches of China(G19990751)
文摘Let K/Q be any abelian extension where Q is the field of rational numbers. By Galois theory and the Frobenius formula for induced characters, we prove that there exists a metabelian group G and an irreducible character X of G such that K=Q(X).