期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
结合曲面局部纹理特征的3维人脸识别 被引量:3
1
作者 雷超 张海燕 詹曙 《中国图象图形学报》 CSCD 北大核心 2019年第2期215-226,共12页
目的人脸2维图像反映出来的纹理并非是3维人脸曲面真实的纹理,并且受光照和妆容的影响很大,因此探索3维局部纹理特征对于人脸识别任务有着重要的意义。为此详细分析了一种新颖的3维局部纹理特征mesh-LBP对于人脸纹理的描述能力。方法首... 目的人脸2维图像反映出来的纹理并非是3维人脸曲面真实的纹理,并且受光照和妆容的影响很大,因此探索3维局部纹理特征对于人脸识别任务有着重要的意义。为此详细分析了一种新颖的3维局部纹理特征mesh-LBP对于人脸纹理的描述能力。方法首先,在特征提取和识别任务之前,进行一系列的预处理:人脸分割、离群点移除和孔洞填补;接着,在预处理后的人脸曲面上,提取原始mesh-LBP特征,以及基于阈值化策略的3种改进特征:mesh-tLBP、mesh-MBP和mesh-LTP;然后,对于上述提取的4种特征,采用不同的统计方法,包括整体直方图、局部分块直方图和整体编码图像,用做人脸纹理的特征描述。最后,针对CASIA3D数据集中不同表情和姿态变化的人脸,采用余弦相似度进行人脸的识别任务。结果通过对比人脸曲面和普通物体曲面的纹理特征,发现人脸纹理完全不同于普通纹理,不规则并且难以描述;通过对比mesh-LBP两种变体,发现mesh-LBP(α1)适用于姿态变化,而mesh-LBP(α2)适用于表情变化;通过对比原始mesh-LBP及其3种改进,发现mesh-tLBP对于人脸不同表情变化下的识别准确率最高有0. 5%的提升;通过对比3种不同的统计方法,发现采用整体编码图像进行统计的特征尽管弱于局部分块直方图,但相比整体直方图,识别率在不同表情变化下最高有46. 8%的提升。结论 mesh-LBP特征是一种优良的3维局部纹理特征,未来将会在3维医学处理、3维地形起伏检测以及3维人脸识别中得到更多的应用。 展开更多
关键词 3维纹理 mesh-lbp 阈值化策略 统计方法 3维人脸识别
原文传递
肺结节球表面网格向量化特征分类
2
作者 刘通 徐久强 +2 位作者 朱宏博 孟昭岩 窦圣昶 《中国图象图形学报》 CSCD 北大核心 2019年第1期124-134,共11页
目的基于球谐函数与容斥映射算法向量化球面表面纹理与结节形状用以进行胸部CT图像肺结节良恶性判定。区别于基于深度学习解决肺结节良恶性筛查的方法,目前方法多集中于框架改进而忽略了数据预处理,文中所提方法旨在对球面纹理与结节形... 目的基于球谐函数与容斥映射算法向量化球面表面纹理与结节形状用以进行胸部CT图像肺结节良恶性判定。区别于基于深度学习解决肺结节良恶性筛查的方法,目前方法多集中于框架改进而忽略了数据预处理,文中所提方法旨在对球面纹理与结节形状进行向量表达,使其可以输入深度森林进行特征分类训练。方法首先采用辽宁中医药大学附属医院数据,通过3维重构获得3维肺结节图像。其次使用球谐函数与容斥映射算法在保留空间信息的同时将纹理以网格方式映射到标准球面上。再次使用网格-LBP与映射形变能量分别完成对球面纹理与结节形状信息的构建。最后提出一种基于网格的多粒度扫描方法对深度森林训练框架进行改进,并将向量化后的纹理和形状特征加入到改进的深度森林训练框架中进行实验验证。结果通过大量的实验结果验证,在准确率(ACC)、特异度(SPE)、敏感度(SEN)和受试者工作特征曲线下的面积(AUC)4个衡量指标下,本文方法具有优于现存先进方法的表现,其中ACC、SPE、SEN和AUC分别达到76. 06%、69. 46%、88. 46%和0. 84。结论基于球谐函数与容斥映射算法可成功地对肺结节表面和形状两个特征进行向量化并训练,不仅考虑了数据预处理,而且通过两个特征对肺结节良恶性检测的准确率要高于传统1个特征检测的结果,同时也为3维模型中特征的提取及向量化提供了一个有效的方法。 展开更多
关键词 球谐函数 容斥映射算法 向量化表达 网格-lbp 形变能量
原文传递
融合曲面形状和纹理特征的三维人脸识别 被引量:10
3
作者 吴从中 王浩宇 詹曙 《电子测量与仪器学报》 CSCD 北大核心 2018年第9期150-156,共7页
由于2D人脸识别率容易受到姿态、表情、光照以及自身遮挡影响的问题,这一定程度上阻碍了2D人脸识别技术的鲁棒性与发展。而3D人脸数据提供了在3D人脸领域很有前景的特征描述,也有很大潜力提高人脸识别技术的识别率。针对二维人脸识别中... 由于2D人脸识别率容易受到姿态、表情、光照以及自身遮挡影响的问题,这一定程度上阻碍了2D人脸识别技术的鲁棒性与发展。而3D人脸数据提供了在3D人脸领域很有前景的特征描述,也有很大潜力提高人脸识别技术的识别率。针对二维人脸识别中的局限性,先对三维人脸数据进行预处理,人脸分割、平滑去燥等,提出了一种改进的三维人脸分割的方法。改进了三维人脸进行特征提取,使用平均曲率,高斯曲率,增加了协方差,拉普拉斯算子等描述符,且融合其最佳的描述符组合作为三维人脸的特征,计算基于网格局部二值模式(Mesh-LBP)进行提取特征,最后使用支持向量机(SVM)进行三维人脸的分类识别。通过在中国科学院自动化研究所(CASIA)的提供的数据集CASIA 3D face v1分别对高斯曲率、最大最小曲率、平均曲率、协方差、形状指数进行实验,其中平均曲率获得最高识别率93. 17%。实验结果表明,该方法有效地减少了受光照、姿态等变化的影响,且具有较好的鲁棒性和较高的识别率。 展开更多
关键词 三维人脸识别 网格局部二值模式 支持向量机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部