In order to establish a well-balanced scheme, 2D shallow water equations were transformed and solved by using the Finite Volume Method (FVM) with unstructured mesh. The numerical flux from the interface between cell...In order to establish a well-balanced scheme, 2D shallow water equations were transformed and solved by using the Finite Volume Method (FVM) with unstructured mesh. The numerical flux from the interface between cells was computed with an exact Riemann solver, and the improved dry Riemann solver was applied to deal with the wet/dry problems. The model was verified through computing some typical examples and the tidal bore on the Qiantang River. The results show that the scheme is robust and accurate, and could be applied extensively to engineering problems.展开更多
To estimate the physical dose of skin and key organs in a case of overexposure during a cardiac interventional procedure.Methods The female patient aged 50 suffered from owerexposure during ardiac interventional thera...To estimate the physical dose of skin and key organs in a case of overexposure during a cardiac interventional procedure.Methods The female patient aged 50 suffered from owerexposure during ardiac interventional therapy in a hospital,Xinxiang city,Henan province,China in January 2020.The mesh-type phantom for the patient was constructed based on the adult mesh-type reference computational phantoms(MRCPs)released by the International Comission on Radiological Protection Publication 145 (ICRP145)and phantom deformation technology.Models of exposure scenario were constructed and simulated with particle and heavy ion transport code system(PHTTS)according to exposure conditions.Resuts:The maximum absorbed dose of key organs/tissues under iradiation in posteroanterior(PA)and 30°left anterior oblique directions(LOA)was 632.4 and 305.6 mGy,respectively.The let lung,heart,and left mammary gland received a larger dose under both iradiation conditions.The ratio of the absorbed dose with and without shielding was a lculated,and the relative difference in most organs was<1%between two directions.The iso-dose curve of the back skin revealed the ditribution of the absorbed dose(0.1-5.2 Gy).The dose estimate of key tssues/organs was higher than the conventional level,especially the local skin,up to 5.2 Gy.Concusions The interventional procedure in this ase resulted in a higher dose.Monte Carlo codes combined with the MRCPs can be employed to estimate physical dose to individuals in concrete irradia tion scenarios.展开更多
基金Project supported by the Natural Science Foundation of Zhejiang Province (Grant No: M403054).
文摘In order to establish a well-balanced scheme, 2D shallow water equations were transformed and solved by using the Finite Volume Method (FVM) with unstructured mesh. The numerical flux from the interface between cells was computed with an exact Riemann solver, and the improved dry Riemann solver was applied to deal with the wet/dry problems. The model was verified through computing some typical examples and the tidal bore on the Qiantang River. The results show that the scheme is robust and accurate, and could be applied extensively to engineering problems.
基金National Natural Science Foundation of China(No.12105200,12175161,U186720)Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions+1 种基金Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),ChinaNuclear Energy Development Project,China(No.2016-1295).
文摘To estimate the physical dose of skin and key organs in a case of overexposure during a cardiac interventional procedure.Methods The female patient aged 50 suffered from owerexposure during ardiac interventional therapy in a hospital,Xinxiang city,Henan province,China in January 2020.The mesh-type phantom for the patient was constructed based on the adult mesh-type reference computational phantoms(MRCPs)released by the International Comission on Radiological Protection Publication 145 (ICRP145)and phantom deformation technology.Models of exposure scenario were constructed and simulated with particle and heavy ion transport code system(PHTTS)according to exposure conditions.Resuts:The maximum absorbed dose of key organs/tissues under iradiation in posteroanterior(PA)and 30°left anterior oblique directions(LOA)was 632.4 and 305.6 mGy,respectively.The let lung,heart,and left mammary gland received a larger dose under both iradiation conditions.The ratio of the absorbed dose with and without shielding was a lculated,and the relative difference in most organs was<1%between two directions.The iso-dose curve of the back skin revealed the ditribution of the absorbed dose(0.1-5.2 Gy).The dose estimate of key tssues/organs was higher than the conventional level,especially the local skin,up to 5.2 Gy.Concusions The interventional procedure in this ase resulted in a higher dose.Monte Carlo codes combined with the MRCPs can be employed to estimate physical dose to individuals in concrete irradia tion scenarios.